Kết quả tồn tại cho bài toán Dirichlet bị nhiễu mà không có điều kiện dấu trong không gian Orlicz

Springer Science and Business Media LLC - Tập 72 - Trang 585-606 - 2020
H. Moussa1, M. Rhoudaf2, H. Sabiki3
1University of Sultan Moulay Slimane, Beni-Mellal, Morocco
2University of Moulay Ismail, Meknes, Morocco
3University of Ibn Tofail, Kénitra, Morocco

Tóm tắt

Chúng tôi nghiên cứu kết quả tồn tại cho các phương trình elliptic phi tuyến dạng Au + g(x, u, ∇u) = f, trong đó thuật ngữ –div (a(x, u, ∇u)) là một toán tử Leray–Lions từ một tập con của $$ {W}_0^1{L}_M\left(\Omega \right) $$ vào đối ngẫu của nó. Các điều kiện tăng trưởng và cưỡng chế trên trường véc tơ đơn điệu a được quy định bởi một hàm N, mà không nhất thiết phải thoả mãn điều kiện Δ2. Do đó, chúng tôi sử dụng các không gian Orlicz–Sobolev không nhất thiết là phản chiếu và giả sử rằng sự phi tuyến g(x, u, ∇u) là một hàm Carathéodory chỉ thoả mãn điều kiện tăng trưởng mà không có điều kiện dấu. Phía bên phải f thuộc về $$ {W}^{-1}{L}_{\overline{M}}\left(\Omega \right). $$

Từ khóa

#phương trình elliptic phi tuyến #toán tử Leray–Lions #không gian Orlicz #hàm Carathéodory #điều kiện tăng trưởng

Tài liệu tham khảo

L. Aharouch, E. Azroul, and M. Rhoudaf, “Existence of solutions for unilateral problems in L1 involving lower order terms in divergence form in Orlicz spaces,” J. Appl. Anal., 13, 151–181 (2007). L. Aharoucha, A. Benkirane, and M. Rhoudaf, “Existence results for some unilateral problems without sign condition with obstacle free in Orlicz spaces,” Nonlinear Anal., 68, 2362–2380 (2008). L. Aharouch and M. Rhoudaf, “Existence of solution for unilateral problems with L1 data in Orlicz spaces,” Proyecciones, 23, No. 3, 293–317 (2004). D. Apushkinskaya, M. Bildhauer, and M. Fuchs, “Steady states of anisotropic generalized Newtonian fluids,” J. Math. Fluid Mech., 7, 261–297 (2005). A. Benkirane and A. Elmahi, “Almost everywhere convergence of the gradients of solutions to elliptic equations in Orlicz spaces and application,” Nonlin. Anal., 11, No. 28, 1769–1784 (1997). A. Benkirane and A. Elmahi, “A strongly nonlinear elliptic equation having natural growth terms and L1 data,” Nonlin. Anal., 39, 403–411 (2000). A. Benkirane, J. Benouna, and M. Rhoudaf, “Some remarks on a sign condition for perturbations of nonlinear problems,” in: Recent Developments in Nonlinear Analysis, World Scientific Publishing Co., Inc., Hackensack, NJ (2010), pp. 30–42. A. Bensoussan, L. Boccardo, and F. Murat, “On a nonlinear partial differential equation having natural growth terms and unbounded solution,” Ann. Inst. H. Poincaré Anal. Non Linéaire, 5, No. 4, 149–169 (1988). M. Bildhauer, M. Fuchs, and X. Zhong, “On strong solutions of the differential equations modeling the steady flow of certain incompressible generalized Newtonian fluids,” St. Petersburg Math. J., 18, 183–199 (2007). L. Boccardo, F. Murat, and J. P. Puel, “L∞ estimate for some nonlinear elliptic partial differential equations and application to an existence result,” SIAM J. Math. Anal., 2, 326–333 (1992). L. Boccardo, F. Murat, and J. P. Puel, “Existence of bounded solutions for nonlinear elliptic unilateral problems,” Ann. Mat. Pura Appl. (4), 183–196 (1988). H. Brézis and F. Browder, “A property of Sobolev spaces,” Comm. Partial Differential Equations, 4, 1077–1083 (1979). Y. Chen, S. Levine, and M. Rao, “Variable exponent, linear growth functionals in image restoration,” SIAM J. Appl. Math., 66, 1383–1406 (2006). A. Elmahi and D. Meskine, “Existence of solutions for elliptic equations having natural growth terms in Orlicz spaces,” Abstr. Appl. Anal., 12, 1031–1045 (2004). A. Elmahi and D. Meskine, “Nonlinear elliptic problems having natural growth and L1 data in Orlicz spaces,” Ann. Mat. Pura Appl. (4)., 184, 161–184 (2005). A. Fqayeh, A. Benkirane, M. El Moumni et al., “Existence of renormalized solutions for some strongly nonlinear elliptic equations in Orlicz spaces,” Georgian Math. J., 22, No. 3, 305–321 (2015). J.-P. Gossez, “Nonlinear elliptic boundary-value problems for equation with rapidly or slowly increasing coefficients,” Trans. Amer. Math. Soc., 190, 217–237 (1974). J.-P. Gossez, “Nonlinear elliptic boundary-value problems for equations with rapidly or slowly increasing coefficients,” Trans. Amer. Math. Soc., 190, 163–205 (1974). J.-P. Gossez and V. Mustonen, “Variational inequalities in Orlicz spaces,” Nonlin. Anal., 11, 379–492 (1987). J.-P. Gossez, “Some approximation properties in Orlicz–Sobolev,” Studia Math., 74, 17–24 (1982). P. Gwiazda, P. Wittbold, A. Wróblewska-Kamińska, and A. Zimmermann, “Renormalized solutions to nonlinear parabolic problems in generalized Musielak–Orlicz spaces,” Nonlin. Anal., 129, 1–36 (2015). P. Gwiazda, I. Skrzypczak, and A. Zatorska-Goldstein, “Existence of renormalized solutions to elliptic equation in Musielak–Orlicz space,” J. Different. Equat., 264, No. 1, 341–377 (2018). P. Gwiazda, M. Bulí\( \tilde{\mathrm{c}} \)ek, J. Málek, and A. Świerczewska-Gwiazda, “On unsteady flows of implicitly constituted incompressible fluids,” SIAM J. Math. Anal., 44, No. 4, 2756–2801 (2012). S. Hadj Nassar, H. Moussa, and M. Rhoudaf, “Renormalized Solution for a nonlinear parabolic problems with noncoercivity in divergence form in Orlicz spaces,” Appl. Math. Comput., 249, 253–264 (2014). O. Kováčik and J. Rákosník, “On spaces Lp(x) and Wk,p(x),” Czechoslovak Math. J., 41, 592–618 (1991). J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Paris (1969). H. Moussa, F. O. Gallego, and M. Rhoudaf, “Capacity solution to a coupled system of parabolic-elliptic equations in Orlicz–Sobolev spaces,” NoDEA Nonlinear Differential Equations Appl. 25, Article number 14 (2018). J. Musielak, “Orlicz spaces and modular spaces,” Lect. Notes Math., 1034, Springer, Berlin (1983). H. Nakano, Modulared Semi-Ordered Linear Spaces, Maruzen Co., Ltd., Tokyo (1950). P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE Trans. Pattern Anal. Mach. Intell., 12, 629–639 (1990). A. Porretta, “Nonlinear equations with natural growth terms and measure data,” Electron. J. Different. Equat., Conf. 09, 181–202 (2002). K. R. Rajagopal and M. Ružička, “Mathematical modeling of electrorheological materials,” Contin. Mech. Thermodyn., 13, 59–78 (2001). M. Ružička, “Electrorheological fluids: modeling and mathematical theory,” Lect. Notes Math., Springer, Berlin (2000). V. Zhikov, “Averaging of functionals of the calculus of variations and elasticity theory,” Math. USSR, Izv., 29, No. 1, 33–66 (1987).