Existence Results for Non-instantaneous Impulsive Nonlinear Fractional Differential Equation Via Variational Methods

Yulin Zhao1, Chaoliang Luo2, Haibo Chen3
1Sch. of Sci., Hunan Univ. of Technol., Zhuzhou, China
2School of Science, Hunan University of Technology, Zhuzhou, China
3School of Mathematics and Statistics, Central South University, Changsha, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Benchohra, M., Henderson, J., Ntouyas, S.: Theory of Impulsive Differential Equations, Contemporary Mathematics and Its Applications. Hindawi Publishing Corporation, New York (2006)

Agarwal, R., Hristova, S., O’Regan, D.: Non-instantaneous Impulses in Differential Equations. Springer, Berlin (2017)

Podlubny, I.: Fractional Differential Equations, Mathematics in Science and Engineering, vol. 198. Academic Press, New York (1999)

Diethelm, K.: The Analysis of Fractional Differential Equation. Spring, Heidelberg (2010)

Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)

Wang, J., Fečkan, M., Zhou, Y.: A survey on impulsive fractional differential equations. Fract. Calc. Appl. Anal. 19(4), 806–831 (2016)

Stamova, I., Stamov, G.: Applied Impulsive Mathematical Models. Springer International Publishing, Berlin (2016)

Wang, J., Fečkan, M., Zhou, Y.: Fractional order differential switched systems with coupled nonlocal initial and impulsive conditions. Bull. des Sci. Math. 141, 727–746 (2017)

Shah, K., Khalil, H., Ali Khan, R.: Investigation of positive solution to a coupled system of impulsive boundary value problems for nonlinear fractional order differential equations. Chaos, Solitons Fractals 77, 240–246 (2015)

Wang, G., Ahmad, B., Zhang, L., Nieto, J.J.: Comments on the concept of existence of solution for impulsive fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 19(3), 401–403 (2014)

D’Aguì, G., Di Bella, B., Tersian, S.: Multiplicity results for superlinear boundary value problems with impulsive effects. Math. Methods Appl. Sci. 39, 1060–1068 (2016)

Bonanno, G., Rodríguez-López, R., Tersian, S.: Existence of solutions to boundary value problem for impulsive fractional differential equations. Fract. Calc. Appl. Anal. 17(3), 717–44 (2014)

Zhao, Y., Chen, H., Xu, C.: Nontrivial solutions for impulsive fractional differential equations via Morse theory. Appl. Math. Comput. 307, 170–179 (2017)

Torres, C., Nyamoradia, N.: Impulsive fractional boundary value problem with p-Laplace operator. J. Appl. Math. Comput. 55, 257–278 (2017)

Zhao, Y., Tang, L.: Multiplicity results for impulsive fractional differential equations with p-Laplacian via variational methods, Bound. Value Probl. 2017, Article ID 123 (2017)

Heidarkhani, S., Zhao, Y., Caristi, G., Afrouz, G.A., Moradi, S.: Infinitely many solutions for perturbed impulsive fractional differential systems. Appl. Anal. 96(8), 1401–1424 (2017)

Li, P., Wang, H., Li, Z.: Solutions for impulsive fractional differential equations via variational methods, J. Funct. Spaces., Article ID 2941368 (2016)

Hernádez, E., O’Regan, D.: On a new class of abstract impulsive differential equations. Proc. Am. Math. Soc. 141(5), 1641–1649 (2013)

Pierri, M., ORegan, D., Rolnik, V.: Existence of solutions for semi-linear abstract differential equations with not instantaneous impulses. Appl. Math. Comput. 219, 6743–6749 (2013)

Muslim, M., Kumar, A., Fečkan, M.: Existence, uniqueness and stability of solutions to second order nonlinear differential equations with non-instantaneous impulses. J. King Saud Univ. 30, 204–213 (2018)

Bai, L., Nieto, J.J.: Variational approach to differential equations with not instantaneous impulses. Appl. Math. Lett. 73, 44–48 (2017)

Bai, L., Nieto, J.J., Wang, X.: Variational approach to non-instantaneous impulsive nonlinear differential equations. J. Nonlinear Sci. Appl. 10, 2440–2448 (2017)

Hernández, E., Pierri, M., O’Regan, D.: On abstract differential equations with non instantaneous impulses. Topol. Methods Nonlinear Anal. 46, 1067–1085 (2015)

Agarwal, R., O’Regan, D., Hristova, S.: Stability by Lyapunov like functions of nonlinear differential equations with non-instantaneous impulses. J. Appl. Math. Comput. 53, 147–168 (2017)

Gautam, G.R., Dabas, J.: Mild solutions for class of neutral fractional functional differential equations with not instantaneous impulses. Appl. Math. Comput. 259, 480–489 (2015)

Yang, D., Wang, J., O’Regan, D.: Asymptotic properties of the solutions of nonlinear non-instantaneous impulsive differential equations. J. Frankl. Inst. 354, 6978–7011 (2017)

Wang, J., Fečkan, M., Tian, Y.: Stability analysis for a general class of non-instantaneous impulsive differential equations. Mediter. J. Math. 14, 1–21 (2017)

Jiao, F., Zhou, Y.: Existence results for fractional boundary value problem via critical point theory. Int. J. Bifurc. Chaos 22, 1250086 (2012)

Khaliq, A., Rehman, M.: On variational methods to non-instantaneous impulsive fractional differential equation. Appl. Math. Lett. 83, 95–102 (2018)

Mawhin, J., Willem, M.: Critical Point Theory and Hamiltonian Systems. Springer, New York (1989)

Rabinowitz, P.H.: Minimax methods in critical point theory with applications to differential equations. In: CBMS Reg. Conf. Ser. Math., vol. 65, Amer. Mat. Soc. Providence (1986)

Zeidler, E.: Nonlinear Functional Analysis and Its Applications, III, Variational Methods and optimization (Translated from the German by Leo F. Boron). Springer, New York (1985)

Bai, L., Dai, B., Nieto, J.J.: Necessary and sufficient conditions for the existence of non-constant solutions generated by impulses of second order BVPs with convex potential. Electron. J. Qual. Theory Differ. Equ. 1, 1–13 (2018)