Exhaled nitric oxide and urinary EPX levels in infants: a pilot study
Tóm tắt
Objective markers of early airway inflammation in infants are not established but are of great interest in a scientific setting. Exhaled nitric oxide (FeNO) and urinary eosinophilic protein X (uEPX) are a two such interesting markers. To investigate the feasibility of measuring FeNO and uEPX in infants and their mothers and to determine if any relations between these two variables and environmental factors can be seen in a small sample size. This was conducted as a pilot study for the ongoing Swedish Environmental Longitudinal Mother and child Asthma and allergy study (SELMA). Consecutive infants between two and six months old and their mothers at children's health care centres were invited, and 110 mother-infant pairs participated. FeNO and uEPX were analysed in both mothers and infants. FeNO was analyzed in the mothers online by the use of the handheld Niox Mino device and in the infants offline from exhaled air sampled during tidal breathing. A 33-question multiple-choice questionnaire that dealt with symptoms of allergic disease, heredity, and housing characteristics was used. FeNO levels were reduced in infants with a history of upper respiratory symptoms during the previous two weeks (p < 0.002). There was a trend towards higher FeNO levels in infants with windowpane condensation in the home (p < 0.05). There was no association between uEPX in the infants and the other studied variables. The use of uEPX as a marker of early inflammation was not supported. FeNO levels in infants were associated to windowpane condensation. Measuring FeNO by the present method may be an interesting way of evaluating early airway inflammation. In a major population study, however, the method is difficult to use, for practical reasons.
Tài liệu tham khảo
CG Bornehag, J Sundell, T Sigsgaard, Dampness in building and health (DBH): Report from an ongoing epidemiological investigation on the association between indoor environmental factors and health effects among children in Sweden. Indoor Air. 14, 59–66 (2004). doi:10.1111/j.1600-0668.2004.00274.x
K Alving, E Weitzberg, JM Lundberg, Increased amount of nitric oxide in exhaled air in asthmatics. European Respiratory Journal. 6, 1368–1370 (1993)
ATS/ERS, ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. American Journal Of Respiratory And Critical Care Medicine. 171, 912–930 (2005)
C Gabriele, R Asgarali, VW Jaddoe, A Hofman, HA Moll, JC de Jongste, Smoke exposure, airway symptoms and exhaled nitric oxide in infants: the Generation R study. European Respiratory Journal. 32, 307–313 (2008). doi:10.1183/09031936.00132607
P Latzin, CE Kuehni, DN Baldwin, HL Roiha, C Casaulta, U Frey, Elevated exhaled nitric oxide in newborns of atopic mothers precedes respiratory symptoms.[see comment]. American Journal of Respiratory & Critical Care Medicine. 174, 1292–1298 (2006). doi:10.1164/rccm.200606-782OC
B Chawes, F Buchvald, A Bischoff, L Loland, M Hermansen, L Halkjaer, K Bonnelykke, H Bisgaared, Elevated exhaled nitric oxide in high-risk neonates precedes transient early but not persistent wheeze. American Journal of Respiratory & Critical Care Medicine. 15, 138–142 (2010)
U Gehring, M Oldenwening, B Brunekreef, MH Wieringa, M Kerkhof, HA Smit, CK van der Ent, JC De Jongste, The impact of ambient NO on online measurements of exhaled and nasal NO: the PIAMA study. Pediatric Allergy & Immunology. 20, 665–672 (2009). doi:10.1111/j.1399-3038.2009.00854.x
M Broekema, NHT ten Hacken, F Volbeda, ME Lodewijk, MN Hylkema, DS Postma, W Timens, Airway epithelial changes in smokers but not in exsmokers with asthma. American Journal of Respiratory & Critical Care Medicine. 180, 1170–1178 (2009). doi:10.1164/rccm.200906-0828OC
AC Olin, A Aldenbratt, A Ekman, G Ljungkvist, L Jungersten, K Alving, K Toren, Increased nitric oxide in exhaled air after intake of a nitrate-rich meal. Respiratory Medicine. 95, 153–158 (2001). doi:10.1053/rmed.2000.1010
V Cottin, P Deviller, F Tardy, JF Cordier, Urinary eosinophil-derived neurotoxin/protein X: a simple method for assessing eosinophil degranulation in vivo. Journal of Allergy & Clinical Immunology. 101, 116–123 (1998). doi:10.1016/S0091-6749(98)70202-7
C Gore, CGB Peterson, P Kissen, BM Simpson, LA Lowe, A Woodcock, A Custovic, National Asthma Campaign Manchester Asthma and Allergy Study G, Urinary eosinophilic protein X, atopy, and symptoms suggestive of allergic disease at 3 years of age. Journal of Allergy & Clinical Immunology. 112, 702–708 (2003). doi:10.1016/S0091-6749(03)01886-4
K Oymar, J Havnen, T Halvorsen, R Bjerknes, Eosinophil counts and urinary eosinophil protein X in children hospitalized for wheezing during the first year of life: prediction of recurrent wheezing. Acta Paediatrica. 90, 843–849 (2001)
OD Wolthers, C Heuck, Circadian variations in serum eosinophil cationic protein, and serum and urine eosinophil protein X. Pediatric Allergy & Immunology. 14, 130–133 (2003). doi:10.1034/j.1399-3038.2003.02038.x
J Mattes, K Storm van’s Gravesande, C Moeller, M Moseler, M Brandis, J Kuehr, Circadian variation of exhaled nitric oxide and urinary eosinophil protein X in asthmatic and healthy children. Pediatric Research. 51, 190–194 (2002). doi:10.1203/00006450-200202000-00011
M Nuijsink, WC Hop, PJ Sterk, EJ Duiverman, PS Hiemstra, JC de Jongste, CS Group, Urinary eosinophil protein X in children with atopic asthma.
N Pucci, E Novembre, MG Cammarata, R Bernardini, MG Monaco, C Calogero, A Vierucci, Scoring atopic dermatitis in infants and young children: distinctive features of the SCORAD index. Allergy. 60, 113–116 (2005). doi:10.1111/j.1398-9995.2004.00622.x
K Alving, C Janson, L Nordvall, Performance of a new hand-held device for exhaled nitric oxide measurement in adults and children. Respiratory Research. 7, 67–67 (2006). doi:10.1186/1465-9921-7-67
C Gabriele, EC van der Wiel, EM Nieuwhof, HA Moll, PJFM Merkus, JC de Jongste, Methodological aspects of exhaled nitric oxide measurements in infants. Pediatric Allergy And Immunology: Official Publication Of The European Society Of Pediatric Allergy And Immunology. 18, 36–41 (2007)
PJ Franklin, SW Turner, GL Hall, A Moeller, SM Stick, Exhaled nitric oxide is reduced in infants with rhinorrhea. Pediatric Pulmonology. 39, 117–119 (2005). doi:10.1002/ppul.20149
C Gabriele, EM Nieuwhof, EC Van Der Wiel, W Hofhuis, HA Moll, PJFM Merkus, JC De Jongste, Exhaled nitric oxide differentiates airway diseases in the first two years of life. Pediatric Research. 60, 461–465 (2006). doi:10.1203/01.pdr.0000238242.39881.64
C Janson, P Kalm-Stephens, T Foucard, D Norbäck, K Alving, SL Nordvall, Exhaled nitric oxide levels in school children in relation to IgE sensitisation and window pane condensation. Respiratory Medicine. 99, 1015–1021 (2005). doi:10.1016/j.rmed.2005.02.003
A Lindfors, M van Hage-Hamsten, H Rietz, M Wickman, SL Nordvall, Influence of interaction of environmental risk factors and sensitization in young asthmatic children. Journal of Allergy & Clinical Immunology. 104, 755–762 (1999). doi:10.1016/S0091-6749(99)70284-8
CG Bornehag, J Sundell, L Hagerhed-Engman, T Sigsggard, S Janson, NAberg, DBHS Group, ’Dampness’ at home and its association with airway nose, and skin symptoms among 10,851 preschool children in Sweden: across-sectional study. Indoor Air. 15 Suppl 10, 48–55 (2005)
J Mattes, K Storm van’s Gravesande, U Reining, K Alving, G Ihorst, M Henschen, J Kuehr, NO in exhaled air is correlated with markers of eosinophilic airway inflammation in corticosteroid-dependent childhood asthma. European Respiratory Journal. 13, 1391–1395 (1999)