Excited state dynamics of Zn–salophen complexes

Photochemical & Photobiological Sciences - Tập 21 - Trang 923-934 - 2022
Patrick O’Keeffe1, Daniele Catone2, Stefano Turchini2, Alessandra Paladini1, Antonella Dalla Cort3, Enrico Bodo3, Susanna Piccirillo2,4
1Istituto di Struttura della Materia-CNR (ISM-CNR), EuroFEL Support Laboratory (EFSL), Monterotondo Scalo, Italy
2Istituto di Struttura della Materia-CNR (ISM-CNR), EuroFEL Support Laboratory (EFSL), Rome, Italy
3Dipartimento di Chimica, Università di Roma “La Sapienza”, Rome, Italy
4Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Rome, Italy

Tóm tắt

Zn–salophen complexes are a promising class of fluorescent chemosensors for nucleotides and nucleic acids. We have investigated, by means of steady state UV–Vis, ultrafast transient absorption, fluorescence emission and time dependent density functional theory (TD-DFT) the behavior of the excited states of a salicylidene tetradentate Schiff base (Sal), its Zn(II) coordination compound (Zn–Sal) and the effect of the interaction between Zn–Sal and adenosine diphosphate (ADP). TD-DFT shows that the deactivation of the excited state of Sal occurs through torsional motion, due to its rotatable bonds and twistable angles. Complexation with Zn(II) causes rigidity so that the geometry changes in the excited states with respect to the ground state structure are minimal. By addition of ADP to a freshly prepared Zn–Sal ethanol solution, a longer relaxation constant, in comparison to Zn–Sal, was measured, indicative of the interaction between Zn–Sal and ADP. After a few days, the Zn–Sal–ADP solution displayed the same static and dynamic behavior of a solution containing only the Sal ligand, demonstrating that the coordination of the ADP anion to Zn(II)leads to the demetallation of the Sal ligand. Fluorescence measurements also revealed an enhanced fluorescence at 375 nm following the addition of ADP to the solution, caused by the presence of 2,3-diamino naphthalene that is formed by demetallation and partial decomposition of the Sal ligand. The efficient fluorescence of this species at 375 nm could be selectively detected and used as a probe for the detection of ADP in solution.

Tài liệu tham khảo

Pfeiffer, P., Breith, E., Lübbe, E., & Tsumaki, T. (1933). Tricyclische orthokondensierte Nebenvalenzringe. European Journal of Organic Chemistry, 503, 84–130. https://doi.org/10.1002/jlac.19335030106 Vigato, P. A., & Tamburini, S. (2004). The challenge of cyclic and acyclic Schiff bases and related derivatives. Coordination Chemistry Reviews, 248, 1717–2128. https://doi.org/10.1016/j.cct.2003.09.003 Erxleben, A. (2018). Transition metal salen complexes in bioinorganic and medicinal chemistry. Inorganica Chimica Acta, 472, 40–57. https://doi.org/10.1016/j.ica.2017.06.060 Pessoa, J. C., & Correia, I. (2019). Salan vs. salen metal complexes in catalysis and medicinal applications: Virtues and pitfalls. Coordination Chemistry Reviews, 388, 227–247. https://doi.org/10.1016/j.ccr.2019.02.035 Zhang, J., Xu, L., & Wong, W.-Y. (2018). Energy materials based on metal Schiff base complexes. Coordination Chemistry Reviews, 355, 180–198. https://doi.org/10.1016/j.ccr.2017.08.007 Brabec, V., Hrabina, O., & Kasparkova, J. (2017). Cytotoxic platinum coordination compounds. DNA binding agents. Coordination Chemistry Reviews, 351, 2–31. https://doi.org/10.1016/j.ccr.2017.04.013 Leoni, L., Carletta, A., Fusaro, L., Dubois, J., Tumanov, N. A., Aprile, C., Wouters, J., & Dalla Cort, A. (2019). A simple and efficient mechanochemical route for the synthesis of salophen ligands and of the corresponding Zn, Ni, and Pd complexes. Molecules, 24(12), 2314. https://doi.org/10.3390/molecules24122314 Oliveri, I. P., Malandrino, G., & Di Bella, S. (2014). Self-assembled nanostructures of amphiphilic zinc(II) salophen complexes: role of the solvent on their structure and morphology. Dalton Transactions, 43, 10208–10214. https://doi.org/10.1039/C4DT00973H Consiglio, G., Failla, S., Oliveri, I. P., Purrello, R., & Di Bella, S. (2009). Controlling the molecular aggregation. An amphiphilic Schiff-base zinc(II) complex as supramolecular fluorescent probe. Dalton Transactions, 47, 10426–10428. https://doi.org/10.1039/B914930A Yin, H.-Y., & Tang, J. (2017). Introducing metallosalens into biological studies: The renaissance of traditional coordination complexes. European Journal of Inorganic Chemistry, 44, 5085–5093. https://doi.org/10.1002/ejic.201700695 Germain, M. E., Thomas, R., Vargo, T. R., Khalifah, P. G., & Knapp, M. J. (2007). Fluorescent detection of nitroaromatics and 2,3-Dimethyl-2,3-dinitrobutane (DMNB) by a zinc complex: (salophen)Zn. Inorganic Chemistry, 46(11), 4422–4429. https://doi.org/10.1021/ic062012c Consiglio, G., Oliveri, I. P., Failla, S., & Di Bella, S. (2019). On the aggregation and sensing properties of zinc(II) Schiff-base complexes of salen-type ligands. Molecules, 24(13), 2514. https://doi.org/10.3390/molecules24132514 Ciavardini, A., Dalla Cort, A., Fornarini, S., Scuderi, D., Giardini, A., Forte, G., Bodo, E., & Piccirillo, S. (2017). Adenosine monophosphate recognition by zinc–salophen complexes: IRMPD spectroscopy and quantum modeling study. Journal of Molecular Spectroscopy, 335, 108–116. https://doi.org/10.1016/j.jms.2017.02.014 Ciavardini, A., Fornarini, S., Dalla Cort, A., Piccirillo, S., Scuderi, D., & Bodo, E. (2017). Experimental and computational investigation of salophen-Zn gas phase complexes with cations: A source of possible interference in anionic recognition. Journal of Physical Chemistry A, 121(37), 7042–7050. https://doi.org/10.1021/acs.jpca.7b05825 Wezenberg, S. J., Escudero-Adan, E. C., Benet-Buchholz, J., & Kleij, A. W. (2009). Anion-templated formation of supramolecular multinuclear assemblies. Chemistry, 15, 5695–5700. https://doi.org/10.1002/chem.200900528 Dalla Cort, A., De Bernardin, P., & Schiaffino, L. (2009). A new water soluble Zn-salophen derivative as a receptor for α-aminoacids: Unexpected chiral discrimination. Chirality, 21, 104–109. https://doi.org/10.1002/chir.20614 Cano, M., Rodrıguez, L., Lima, J. C., Pina, F., Dalla Cort, A., Pasquini, C., & Schiaffino, L. (2009). Specific supramolecular interactions between Zn2+-salophen complexes and biologically relevant anions. Inorganic Chemistry. https://doi.org/10.1021/ic900557n Piccinno, M., Aragay, G., Yafteh Mihan, F., Ballester, P., & Dalla Cort, A. (2015). Unexpected emission properties of a 1,8-naphthalimide unit covalently appended to a Zn–salophen. European Journal of Inorganic Chemistry. https://doi.org/10.1002/ejic.201500258 Kumari, N., & Zelder, F. (2015). Detecting biologically relevant phosphates with locked salicylaldehyde probes in water. Chemical Communnications, 51, 17170. https://doi.org/10.1039/C5CC07413D Wezenberg, S. J., Anselmo, D., Escudero-Adán, E. C., Benet-Buchholz, J., & Kleij, A. W. (2010). Dimetallic activation of dihydrogen phosphate by Zn(salphen) chromophores. European Journal of Inorganic Chemistry, 29, 4611–4616. https://doi.org/10.1002/ejic.201000455 Dalla Cort, A., Mandolini, L., Pasquini, C., Rissanen, K., Russo, L., & Schiaffino, L. (2007). Zinc–salophen complexes as selective receptors for tertiary amines. New Journal of Chemistry, 31, 1633–1638. https://doi.org/10.1039/B700723J Catone, D., Di Mario, L., Martelli, F., O’Keeffe, P., Paladini, A., Pelli Cresi, J. S., Sivan, A. K., Tian, L., Toschi, F., & Turchini, S. (2020). Ultrafast optical spectroscopy of semiconducting and plasmonic nanostructures and their hybrids. Nanotechnology, 32(2), 025703. https://doi.org/10.1088/1361-6528/abb907 Neese, F. (2018). Software update: The ORCA program system, version 4.0. Wiley Interdisciplinary Reviews, 8, 1. https://doi.org/10.1002/wcms.1327 Aradi, B., Hourahine, B., & Frauenheim, T. (2007). DFTB+, a sparse matrix-based implementation of the DFTB method. Journal of Physical Chemistry A, 111, 5678–5684. https://doi.org/10.1021/jp070186p Elstner, M., Porezag, D., Jungnickel, G., Elsner, J., Haugk, M., Frauenheim, T., Suhai, S., & Seifert, G. (1998). Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Physical Review B, 58, 7260–7268. https://doi.org/10.1103/PhysRevB.58.7260 Elstner, M., Hobza, P., Frauenheim, T., Suhai, S., & Kaxiras, E. (2001). Hydrogen bonding and stacking interactions of nucleic acid base pairs: A density-functional-theory based treatment. The Journal of Chemical Physics, 114, 5149–5155. https://doi.org/10.1063/1.1329889 Frisch, M. J., Trucks, J. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G., Nakatsuji, H., et al. (2016). Gaussian 16, revision A.03. Gaussian, Inc. Khan, T., Vaidya, S., Mhatre, D. S., & Datta, A. (2016). The prospect of salophen in fluorescence lifetime sensing of Al3+. The Journal of Physical Chemistry B, 120, 10319–10326. https://doi.org/10.1021/acs.jpcb.6b05854 Taniguchi, M., & Lindsey, J. S. (2018). Database of absorption and fluorescence spectra of >300 common compounds for use in photochemCAD. Photochemistry and Photobiology, 94, 290–327. https://doi.org/10.1111/php.12860 Manoharan, R., & Dogra, S. K. (1988). Acidity constants in the excited states: Absence of an excited-state prototropic equilibrium for the monocation–neutral pair of 2,3-diaminonaphthalene. Journal of Physical Chemistry, 92, 5282–5287. https://doi.org/10.1021/j100329a043 Gasbarri, C., Angelini, G., Fontana, A., De Maria, P., Siani, G., Giannicchi, I., & Dalla Cort, A. (2012). Kinetics of demetallation of a zinc–salophen complex into liposomes. Biochimica et Biophysica Acta, 1818, 747–752. https://doi.org/10.1016/j.bbamem.2011.10.014 Sayer, A. H., Blum, E., Major, D. T., Vardi-Kilshtain, A., Levi Hevroni, B., & Fischer, B. (2015). Adenosine/guanosine-3’,5’-bis-phosphates as biocompatible and selective Zn2+ ion chelators. Characterization and comparison with adenosine/guanosine-5’-di-phosphate. Dalton Transactions, 44, 7305. https://doi.org/10.1039/C5DT00080G Dobryakov, A. L., Kovalenko, S. A., & Ernsting, N. P. (2005). Coherent and sequential contributions to femtosecond transient absorption spectra of a rhodamine dye in solution. The Journal of Chemical Physics, 123(4), 044502. https://doi.org/10.1063/1.1948383 Vivas, M. G., Germino, J. C., Barboza, C. A., Vazquez, P. A. M., De Boni, L., Atvars, T. D. Z., & Mendonça, C. R. (2016). Excited-state and two-photon absorption in salicylidene molecules: The role of Zn(II) planarization. Journal of Physical Chemistry C, 120, 4032–4039. https://doi.org/10.1021/acs.jpcc.5b12042 Barboza, C. A., Germino, J. C., Santana, A. M., Quites, F. J., Vazquez, P. A. M., & Atvars, T. D. Z. (2015). Structural correlations between luminescent properties and excited state internal proton transfer in some Zinc(II) N, N′-Bis(salicylidenes). Journal of Physical Chemistry C, 119, 6152–6163. https://doi.org/10.1021/jp510476h Gondia, N. K., & Sharma, S. K. (2019). Comparative optical studies of naphthalene based Schiff base complexes for colour tunable application. Materials Chemistry and Physics, 224, 314–319. https://doi.org/10.1016/j.matchemphys.2018.12.014