Excitation of the Laser wakefield by asymmetric chirped laser pulse in under dense plasma
Tóm tắt
Từ khóa
Tài liệu tham khảo
D.W. Kerst, A 20 million electron volt Betatron or Induction accelerator. Rev. Sci. Instrum. 13, 387 (1942)
E. Everhart, P. Lorrain, The Cockcroft Walton voltage multiplying circuit. Rev. Sci. Instrum. 24, 221 (1953)
S.E. Hunt, The development and application of the Van de Graaff accelerator. Phys. Edu. 2, 140 (1967)
D.A. Bromley, The development of electrostatic accelerators. Nuclear Instrum. Methods. 122, 1–34 (1974)
M.A. Wani, V. Thakur, H.S. Ghotra, N. Kant, Effect of axial electron temperature and plasma density ramp on self-focusing/defocusing of a laser beam in plasma. Optik 192, 162963 (2019)
V. Sharma, V. Thakur, N. Kant, Third harmonic generation of a relativistic self-focusing laser in plasma in the presence of wiggler magnetic field. High Energy Density Phys. 32, 51–55 (2019)
S. Kumar, S. Vij, N. Kant, V. Thakur, Resonant terahertz generation by the interaction of laser beams with magnetized anharmonic carbon nanotube array. Plasmonics 1, 8 (2021)
V. Sharma, S. Kumar, To study the effect of laser frequency-chirp on trapped electrons in laser Wakefield acceleration. J. Phys. Conf. Ser. 2267, 012097 (2022)
M.A. Varaki, N. Kant, Magnetic field-assisted Wakefield generation and electron acceleration and by Gaussian and super-Gaussian laser pulses in plasma. Modern Phys. Lett. B. 36, 2150604 (2022)
J. Krall, A. Ting, E. Esarey, P. Sprangle, Enhanced acceleration in a self-modulated-laser wake-field accelerator. Phys. Rev. E 48, 3 (1993)
A. Döpp, E. Guillaume, C. Thaury, A. Lifschitz, K. Ta Phuoc, V. Malka, Energy boost in laser Wakefield accelerators using sharp density transitions. Phys. Plasmas 23, 056702 (2016)
D.N. Gupta, K. Gopal, I. Nam, V.V. Kulagin, H. Suk, Laser Wakefield acceleration of electrons from a density-modulated plasma. Laser Part. Beams 32(03), 449–454 (2014)
V.B. Pathak, J. Vieiral, R.A. Fonseca, L.O. Silva, Effect of the frequency chirp on laser Wakefield acceleration. New J. Phys. 14, 023057 (2012)
X. Zhang, B. Shen, L. Ji, W. Wang, J. Xu, Effect of pulse profile and chirp on a laser wakefield generation. Phys. Plasmas 19, 053103 (2012)
H.K. Malik, S. Kumar, Y. Nishida, Electron acceleration by laser produced wake field: pulse shape effect. Opt. Commun. 280, 417–423 (2007)
J. Singh, J. Rajput, N. Kant, S. Kumar, Simulation study of two-color laser Wakefield acceleration. Adv. Mater. Radiat. Phys. 2352, 050043-1–050043-4 (2020)
V. Sharma, S. Kumar, N. Kant, V. Thakur, Enhanced laser wakefield by beating of two co-propagating Gaussian laser pulses. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01250-6
M. Singh, K. Gopal, D.N. Gupta, Temporally asymmetric laser pulse for magnetic-field generation in plasmas. Phys. Lett. A. 380, 23673 (2016)
K. Gopal, D.N. Gupta, Optimization and control of electron beams from laser Wakefield accelerations using asymmetric laser pulses. Phys. Plasmas 24, 103101 (2017)
A. Kumar, N. Kant, H.S. Ghotra, Laser wakefield and direct laser acceleration of electron in plasma bubble regime with circularly polarized laser pulse. Opt. Quant. Electron. 53, 617 (2021)
H.S. Ghotra, Electron acceleration by higher-order cosh-gaussian laser pulses in vacuum. Optik 286, 170992 (2023)
A. Verma, A. Kumar, Electron Bernstein wave aided heating of collisional nanocluster plasma by nonlinear interactions of two super-Gaussian laser beams. Laser Phys. 32, 016001 (2022)
A. Kumar, A. Kumar, Plasma wave aided heating of collisional nanocluster plasma by nonlinear interaction of two high power laser beams. Opt. Quant. Electron. 54, 753 (2022)
W.P. Leemans, P. Catravas, E. Esarey, C.G.R. Geddes, C. Toth, R. Trines, C.B. Schroeder, B.A. Shadwick, J.V. Tilborg, J. Faure, Electron-yield enhancement in a laser-Wakefield accelerator driven by asymmetric laser pulses. Phys. Rev. Lett. 89, 17 (2002)