Exchangeability and the law of maturity
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bernardo, J., & Smith, A. (1994). Bayesian theory. Wiley Series in Probability and Mathematical Statistics. New York: Wiley.
Brooks, R. J., James, W. H., & Gray, E. (1991). Modelling sub-binomial variation in the frequency of sex combinations in litters of pigs. Biometrics, 47, 403–417.
de Finetti, B. (1931). Funzione caratteristica di un fenomeno aleatorio. Atti della R Academia Nazionale del Linceo, 6, 251–299.
Diniz, C. A., Tutia, M. H., Leite, J. G., et al. (2010). Bayesian analysis of a correlated binomial model. Brazilian Journal of Probability and Statistics, 24(1), 68–77.
Iglesias, P., Loschi, R., Pereira, C., & Wechsler, S. (2009). A note on extendibility and predictivistic inference in finite populations. Brazilian Journal of Probability and Statistics, 23(2), 216–226.
Kadane, J. B. (2014). Sums of possibly associated bernoulli variables: The conway-maxwell-binomial distribution. arXiv: http://arxiv.org/abs/14041856 .
Kalra, A., & Shi, M. (2010). Consumer value-maximizing sweepstakes and contests. Journal of Marketing Research, 47(2), 287–300.
Lee, J., & Lio, Y. (1999). A note on bayesian estimation and prediction for the beta-binomial model. Journal of Statistical Computation and Simulation, 63(1), 73–91.
Lindley, D., & Phillips, L. (1976). Inference for a Bernoulli process (a Bayesian view). The American Statistician, 30(3), 112–119.
Militana, E., Wolfson, E., & Cleaveland, J. (2010). An effect of inter-trial duration on the gambler’s fallacy choice bias. Behavioural Processes, 84(1), 455–459.
O’Neill, B., & Puza, B. (2005). In defence of the reverse gambler’s belief. Mathematical Scientist, 30(1), 13–16.
Oppenheimer, D., & Monin, B. (2009). The retrospective gambler’s fallacy: Unlikely events, constructing the past, and multiple universes. Judgment and Decision Making, 4(5), 326–334.
Rabin, M., & Vayanos, D. (2010). The gambler’s and hot-hand fallacies: Theory and applications. Review of Economic Studies, 77(2), 730–778.
Rodrigues, F., & Wechsler, S. (1993). A discrete Bayes explanation of a failure-rate paradox. IEEE Transactions on Reliability, 42(1), 132–133.