Exchangeability and the law of maturity

Springer Science and Business Media LLC - Tập 78 Số 4 - Trang 603-615 - 2015
Fernando V. Bonassi1, Rafael B. Stern2, Cláudia Peixoto3, Sérgio Wechsler3
1Google Inc, Mountain View, CA, 94043-1351, USA
2Department of Statistics, Carnegie Melon University, Pittsburgh, PA , 15217, USA
3Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo SP, Brazil

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bernardo, J., & Smith, A. (1994). Bayesian theory. Wiley Series in Probability and Mathematical Statistics. New York: Wiley.

Brooks, R. J., James, W. H., & Gray, E. (1991). Modelling sub-binomial variation in the frequency of sex combinations in litters of pigs. Biometrics, 47, 403–417.

de Finetti, B. (1931). Funzione caratteristica di un fenomeno aleatorio. Atti della R Academia Nazionale del Linceo, 6, 251–299.

Diniz, C. A., Tutia, M. H., Leite, J. G., et al. (2010). Bayesian analysis of a correlated binomial model. Brazilian Journal of Probability and Statistics, 24(1), 68–77.

Iglesias, P., Loschi, R., Pereira, C., & Wechsler, S. (2009). A note on extendibility and predictivistic inference in finite populations. Brazilian Journal of Probability and Statistics, 23(2), 216–226.

Kadane, J. B. (2014). Sums of possibly associated bernoulli variables: The conway-maxwell-binomial distribution. arXiv: http://arxiv.org/abs/14041856 .

Kalra, A., & Shi, M. (2010). Consumer value-maximizing sweepstakes and contests. Journal of Marketing Research, 47(2), 287–300.

Lee, J., & Lio, Y. (1999). A note on bayesian estimation and prediction for the beta-binomial model. Journal of Statistical Computation and Simulation, 63(1), 73–91.

Lindley, D., & Phillips, L. (1976). Inference for a Bernoulli process (a Bayesian view). The American Statistician, 30(3), 112–119.

Mendel, M. (1994). Operational parameters in Bayesian models. Test, 3(2), 195–206.

Militana, E., Wolfson, E., & Cleaveland, J. (2010). An effect of inter-trial duration on the gambler’s fallacy choice bias. Behavioural Processes, 84(1), 455–459.

O’Neill, B., & Puza, B. (2005). In defence of the reverse gambler’s belief. Mathematical Scientist, 30(1), 13–16.

Oppenheimer, D., & Monin, B. (2009). The retrospective gambler’s fallacy: Unlikely events, constructing the past, and multiple universes. Judgment and Decision Making, 4(5), 326–334.

Rabin, M., & Vayanos, D. (2010). The gambler’s and hot-hand fallacies: Theory and applications. Review of Economic Studies, 77(2), 730–778.

Rodrigues, F., & Wechsler, S. (1993). A discrete Bayes explanation of a failure-rate paradox. IEEE Transactions on Reliability, 42(1), 132–133.

Shmueli, G., Minka, T. P., Kadane, J. B., Borle, S., & Boatwright, P. (2005). A useful distribution for fitting discrete data: revival of the Conway–Maxwell–Poisson distribution. Journal of the Royal Statistical Society: Series C (Applied Statistics), 54(1), 127–142.