Exceptional cyclability of thermally stable PVdF-co-HFP/SiO2 nanocomposite polymer electrolytes for sodium ion batteries
Tài liệu tham khảo
Winter, 2004, What are batteries, fuel cells, and supercapacitors?, Chem. Rev., 104, 4245, 10.1021/cr020730k
Wang, 2018, Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries, Npj Comput. Mater., 4, 10.1038/s41524-018-0064-0
Nitta, 2015, Li-ion battery materials: present and future, Mater. Today, 18, 252, 10.1016/j.mattod.2014.10.040
Goodenough, 2012, Rechargeable batteries: challenges old and new, J. Solid State Electrochem., 16, 2019, 10.1007/s10008-012-1751-2
Hwang, 2017, Sodium-ion batteries: present and future, Chem. Soc. Rev., 46, 3529, 10.1039/C6CS00776G
Yang, 2021, Materials design for high-safety sodium-ion battery, Adv. Energy Mater., 11, 1
Ponrouch, 2015, Non-aqueous electrolytes for sodium-ion batteries, J. Mater. Chem. A, 3, 22, 10.1039/C4TA04428B
Wang, 2021, Development of solid-state electrolytes for sodium-ion battery-a short review, Elements., 1, 91
Il Kim, 2017, A structurable gel-polymer electrolyte for sodium ion batteries, Adv. Funct. Mater., 27, 1
Stephan, 2005, Characterization of poly(vinylidene fluoride-hexafluoropropylene) (PVdF-co-HFP) electrolytes complexed with different lithium salts, Eur. Polym. J., 41, 15, 10.1016/j.eurpolymj.2004.09.001
Yuan, 2015, Phase PVdF-HFP induced by mesoporous SiO2 nanorods: synthesis and formation mechanism, J. Mater. Chem. C, 3, 3708, 10.1039/C5TC00005J
Isa, 2017
Il Kim, 2018, Design of a porous gel polymer electrolyte for sodium ion batteries, J. Membr. Sci., 566, 122, 10.1016/j.memsci.2018.08.066
Li, 2008, Porous nanocomposite polymer electrolyte prepared by a non-solvent induced phase separation process, Funct. Mater. Lett., 1, 139, 10.1142/S1793604708000253
Raghavan, 2008, Novel electrospun poly(vinylidene fluoride-co-hexafluoropropylene)–in situ SiO2 composite membrane-based polymer electrolyte for lithium batteries, J. Power Sources, 184, 437, 10.1016/j.jpowsour.2008.03.027
Arifeen, 2023, Effects of a high-performance, solution-cast composite electrolyte on the host electrospun polymer membrane for solid-state lithium metal batteries, Mater. Today Energy, 33, 101270, 10.1016/j.mtener.2023.101270
Raghavan, 2008, Ionic conductivity and electrochemical properties of nanocomposite polymer electrolytes based on electrospun poly(vinylidene fluoride-co-hexafluoropropylene) with nano-sized ceramic fillers, Electrochim. Acta, 54, 228, 10.1016/j.electacta.2008.08.007
Ni’Mah, 2015, Solid-state polymer nanocomposite electrolyte of TiO2/PEO/NaClO4 for sodium ion batteries, J. Power Sources, 278, 375, 10.1016/j.jpowsour.2014.11.047
Vignarooban, 2016, Current trends and future challenges of electrolytes for sodium-ion batteries, Int. J. Hydrog. Energy, 41, 2829, 10.1016/j.ijhydene.2015.12.090
Zhong, 2012, Electrospun PVdF-PVC nanofibrous polymer electrolytes for polymer lithium-ion batteries, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 177, 86, 10.1016/j.mseb.2011.09.008
Prasanth, 2014, Effect of poly ( ethylene oxide ) on ionic conductivity and electrochemical properties of poly(vinylidene fluoride) based polymer gel electrolytes prepared by electrospinning for lithium ion batteries, J. Power Sources, 245, 283, 10.1016/j.jpowsour.2013.05.178
Wu, 2005, PVdF-HFP/P123 hybrid with mesopores: a new matrix for high-conducting, low-leakage porous polymer electrolyte, Polymer, 46, 5929, 10.1016/j.polymer.2005.05.077
Lee, 2011, Crystal structure and thermal properties of poly (vinylidene fluoride- hexafluoropropylene) films prepared by various processing conditions, 12, 1030
Pandey, 2011, Magnesium ion-conducting gel polymer electrolytes dispersed with fumed silica for rechargeable magnesium battery application, J. Solid State Electrochem., 15, 2253, 10.1007/s10008-010-1240-4
Oh, 2004, Preparation and characterization of gel polymer electrolytes for solid state magnesium batteries, Electrochim. Acta, 50, 903, 10.1016/j.electacta.2004.01.099
Jeong, 2010, Effect of solvent-nonsolvent miscibility on morphology and electrochemical performance of SiO2/PVdF-co-HFP-based composite separator membranes for safer lithium-ion batteries, Macromol. Chem. Phys., 211, 420, 10.1002/macp.200900490
Chen, 2020, Flame-retardant gel polymer electrolyte and interface for quasi-solid-state sodium ion batteries, Chem. Eng. J., 401, 126065, 10.1016/j.cej.2020.126065
Sencadas, 2006, α - to - β transformation on PVdF films obtained by uniaxial stretch, Mater, Sci. Forum, 514-516, 872, 10.4028/www.scientific.net/MSF.514-516.872
Khurana, 2019, Ion conducting polymer-silica hybrid ionogels obtained via non-aqueous sol-gel route, Solid State Ionics, 340, 115027, 10.1016/j.ssi.2019.115027
Tang, 2016, A study of structural, electrical and electrochemical properties of PVdF-HFP gel polymer electrolyte films for magnesium ion battery applications, J. Ind. Eng. Chem., 37, 67, 10.1016/j.jiec.2016.03.001
He, 2005, In situ composite of nano SiO2–PVdF-co-HFP porous polymer electrolytes for Li-ion batteries, Electrochim. Acta, 51, 1069, 10.1016/j.electacta.2005.05.048
Huang, 2012, A lithium-ion battery separator prepared using a phase inversion process, J. Power Sources, 216, 216, 10.1016/j.jpowsour.2012.05.019
Solarajan, 2017, Dimensional stability and electrochemical behaviour of ZrO2 incorporated electrospun PVdF-HFP based nanocomposite polymer membrane electrolyte for Li-ion capacitors, Sci. Rep., 7, 1, 10.1038/srep45390
Zhang, 2021, 11943
Zhang, 2015, Nanocomposite polymer membrane derived from nano TiO2-PMMA and glass fiber nonwoven: high thermal endurance and cycle stability in lithium ion battery applications, J. Mater. Chem. A Mater. Energy Sustain., 3, 17697, 10.1039/C5TA02781K
Zhou, 2014, Study of a novel porous gel polymer electrolyte based on thermoplastic polyurethane/poly(vinylidene fluoride-co-hexafluoropropylene) by electrospinning technique, J. Power Sources, 263, 118, 10.1016/j.jpowsour.2014.03.140
Snedden, 2003, Cross-linked polymer-ionic liquid composite materials, Macromolecules, 36, 4549, 10.1021/ma021710n
Parikh, 2019, Elucidation of separator effect on energy density of Li-ion batteries, 166, 3377
Choi, 2019, Electrical percolation threshold of carbon black in a polymer matrix and its application to antistatic fibre, Sci. Rep., 1
Wang, 2016, Interfacial adhesion energy of lithium-ion battery electrodes, Extrem. Mech. Lett., 9, 226, 10.1016/j.eml.2016.08.002
Wang, 2016, Boric acid assisted reduction of graphene oxide: a promising material for sodium-ion batteries, ACS Appl. Mater. Interfaces, 8, 18860, 10.1021/acsami.6b04774
Raghavan, 2010, Electrochemical performance of electrospun poly(vinylidene fluoride-co-hexafluoropropylene)-based nanocomposite polymer electrolytes incorporating ceramic fillers and room temperature ionic liquid, Electrochim. Acta, 55, 1347, 10.1016/j.electacta.2009.05.025
Aziz, 2013, Electrical conduction mechanism in solid polymer electrolytes: new concepts to Arrhenius equation, J. Soft Mater., 2013, 1, 10.1155/2013/323868
Christie, 1998, Selection of new Kynar-based electrolytes for lithium-ion batteries, J. Power Sources, 74, 77, 10.1016/S0378-7753(98)00036-6
Shubha, 2014, Study on effect of poly (ethylene oxide) addition and in-situ porosity generation on poly (vinylidene fluoride)-glass ceramic composite membranes for lithium polymer batteries, J. Power Sources, 267, 48, 10.1016/j.jpowsour.2014.05.074