Exceptional cyclability of thermally stable PVdF-co-HFP/SiO2 nanocomposite polymer electrolytes for sodium ion batteries

Journal of Energy Storage - Tập 73 - Trang 109026 - 2023
Akhila Das1, Amrutha Melepurakkal2, Pranav Sreeram1, K.T. Gireesh3, Neethu T.M. Balakrishnan1, M.J. Jabeen Fatima1, Abhilash Pullanchiyodan1, Jou-Hyeon Ahn4, Manjusha V. Shelke2, Prasanth Raghavan1,4,5
1Materials Science and NanoEngineering Lab (MSNE–Lab), Department of Polymer Science and Rubber Technology (PSRT), Cochin University of Science and Technology (CUSAT), Cochin 682022, India
2Physical and Materials Chemistry Division, CSIR–National Chemical Laboratory, Pune, Maharashtra 411008, India
3School of Physics, Indian Institute of Science Education and Research (IISER), Thiruvananthapuram 695551, India
4Department of Materials Engineering and Convergence Technology, Gyeongsang National University, 501 Jinju–daero, Jinju 52828, Republic of Korea
5Biorefining and Advanced Materials Research Centre, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK

Tài liệu tham khảo

Winter, 2004, What are batteries, fuel cells, and supercapacitors?, Chem. Rev., 104, 4245, 10.1021/cr020730k Wang, 2018, Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries, Npj Comput. Mater., 4, 10.1038/s41524-018-0064-0 Nitta, 2015, Li-ion battery materials: present and future, Mater. Today, 18, 252, 10.1016/j.mattod.2014.10.040 Goodenough, 2012, Rechargeable batteries: challenges old and new, J. Solid State Electrochem., 16, 2019, 10.1007/s10008-012-1751-2 Hwang, 2017, Sodium-ion batteries: present and future, Chem. Soc. Rev., 46, 3529, 10.1039/C6CS00776G Yang, 2021, Materials design for high-safety sodium-ion battery, Adv. Energy Mater., 11, 1 Ponrouch, 2015, Non-aqueous electrolytes for sodium-ion batteries, J. Mater. Chem. A, 3, 22, 10.1039/C4TA04428B Wang, 2021, Development of solid-state electrolytes for sodium-ion battery-a short review, Elements., 1, 91 Il Kim, 2017, A structurable gel-polymer electrolyte for sodium ion batteries, Adv. Funct. Mater., 27, 1 Stephan, 2005, Characterization of poly(vinylidene fluoride-hexafluoropropylene) (PVdF-co-HFP) electrolytes complexed with different lithium salts, Eur. Polym. J., 41, 15, 10.1016/j.eurpolymj.2004.09.001 Yuan, 2015, Phase PVdF-HFP induced by mesoporous SiO2 nanorods: synthesis and formation mechanism, J. Mater. Chem. C, 3, 3708, 10.1039/C5TC00005J Isa, 2017 Il Kim, 2018, Design of a porous gel polymer electrolyte for sodium ion batteries, J. Membr. Sci., 566, 122, 10.1016/j.memsci.2018.08.066 Li, 2008, Porous nanocomposite polymer electrolyte prepared by a non-solvent induced phase separation process, Funct. Mater. Lett., 1, 139, 10.1142/S1793604708000253 Raghavan, 2008, Novel electrospun poly(vinylidene fluoride-co-hexafluoropropylene)–in situ SiO2 composite membrane-based polymer electrolyte for lithium batteries, J. Power Sources, 184, 437, 10.1016/j.jpowsour.2008.03.027 Arifeen, 2023, Effects of a high-performance, solution-cast composite electrolyte on the host electrospun polymer membrane for solid-state lithium metal batteries, Mater. Today Energy, 33, 101270, 10.1016/j.mtener.2023.101270 Raghavan, 2008, Ionic conductivity and electrochemical properties of nanocomposite polymer electrolytes based on electrospun poly(vinylidene fluoride-co-hexafluoropropylene) with nano-sized ceramic fillers, Electrochim. Acta, 54, 228, 10.1016/j.electacta.2008.08.007 Ni’Mah, 2015, Solid-state polymer nanocomposite electrolyte of TiO2/PEO/NaClO4 for sodium ion batteries, J. Power Sources, 278, 375, 10.1016/j.jpowsour.2014.11.047 Vignarooban, 2016, Current trends and future challenges of electrolytes for sodium-ion batteries, Int. J. Hydrog. Energy, 41, 2829, 10.1016/j.ijhydene.2015.12.090 Zhong, 2012, Electrospun PVdF-PVC nanofibrous polymer electrolytes for polymer lithium-ion batteries, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 177, 86, 10.1016/j.mseb.2011.09.008 Prasanth, 2014, Effect of poly ( ethylene oxide ) on ionic conductivity and electrochemical properties of poly(vinylidene fluoride) based polymer gel electrolytes prepared by electrospinning for lithium ion batteries, J. Power Sources, 245, 283, 10.1016/j.jpowsour.2013.05.178 Wu, 2005, PVdF-HFP/P123 hybrid with mesopores: a new matrix for high-conducting, low-leakage porous polymer electrolyte, Polymer, 46, 5929, 10.1016/j.polymer.2005.05.077 Lee, 2011, Crystal structure and thermal properties of poly (vinylidene fluoride- hexafluoropropylene) films prepared by various processing conditions, 12, 1030 Pandey, 2011, Magnesium ion-conducting gel polymer electrolytes dispersed with fumed silica for rechargeable magnesium battery application, J. Solid State Electrochem., 15, 2253, 10.1007/s10008-010-1240-4 Oh, 2004, Preparation and characterization of gel polymer electrolytes for solid state magnesium batteries, Electrochim. Acta, 50, 903, 10.1016/j.electacta.2004.01.099 Jeong, 2010, Effect of solvent-nonsolvent miscibility on morphology and electrochemical performance of SiO2/PVdF-co-HFP-based composite separator membranes for safer lithium-ion batteries, Macromol. Chem. Phys., 211, 420, 10.1002/macp.200900490 Chen, 2020, Flame-retardant gel polymer electrolyte and interface for quasi-solid-state sodium ion batteries, Chem. Eng. J., 401, 126065, 10.1016/j.cej.2020.126065 Sencadas, 2006, α - to - β transformation on PVdF films obtained by uniaxial stretch, Mater, Sci. Forum, 514-516, 872, 10.4028/www.scientific.net/MSF.514-516.872 Khurana, 2019, Ion conducting polymer-silica hybrid ionogels obtained via non-aqueous sol-gel route, Solid State Ionics, 340, 115027, 10.1016/j.ssi.2019.115027 Tang, 2016, A study of structural, electrical and electrochemical properties of PVdF-HFP gel polymer electrolyte films for magnesium ion battery applications, J. Ind. Eng. Chem., 37, 67, 10.1016/j.jiec.2016.03.001 He, 2005, In situ composite of nano SiO2–PVdF-co-HFP porous polymer electrolytes for Li-ion batteries, Electrochim. Acta, 51, 1069, 10.1016/j.electacta.2005.05.048 Huang, 2012, A lithium-ion battery separator prepared using a phase inversion process, J. Power Sources, 216, 216, 10.1016/j.jpowsour.2012.05.019 Solarajan, 2017, Dimensional stability and electrochemical behaviour of ZrO2 incorporated electrospun PVdF-HFP based nanocomposite polymer membrane electrolyte for Li-ion capacitors, Sci. Rep., 7, 1, 10.1038/srep45390 Zhang, 2021, 11943 Zhang, 2015, Nanocomposite polymer membrane derived from nano TiO2-PMMA and glass fiber nonwoven: high thermal endurance and cycle stability in lithium ion battery applications, J. Mater. Chem. A Mater. Energy Sustain., 3, 17697, 10.1039/C5TA02781K Zhou, 2014, Study of a novel porous gel polymer electrolyte based on thermoplastic polyurethane/poly(vinylidene fluoride-co-hexafluoropropylene) by electrospinning technique, J. Power Sources, 263, 118, 10.1016/j.jpowsour.2014.03.140 Snedden, 2003, Cross-linked polymer-ionic liquid composite materials, Macromolecules, 36, 4549, 10.1021/ma021710n Parikh, 2019, Elucidation of separator effect on energy density of Li-ion batteries, 166, 3377 Choi, 2019, Electrical percolation threshold of carbon black in a polymer matrix and its application to antistatic fibre, Sci. Rep., 1 Wang, 2016, Interfacial adhesion energy of lithium-ion battery electrodes, Extrem. Mech. Lett., 9, 226, 10.1016/j.eml.2016.08.002 Wang, 2016, Boric acid assisted reduction of graphene oxide: a promising material for sodium-ion batteries, ACS Appl. Mater. Interfaces, 8, 18860, 10.1021/acsami.6b04774 Raghavan, 2010, Electrochemical performance of electrospun poly(vinylidene fluoride-co-hexafluoropropylene)-based nanocomposite polymer electrolytes incorporating ceramic fillers and room temperature ionic liquid, Electrochim. Acta, 55, 1347, 10.1016/j.electacta.2009.05.025 Aziz, 2013, Electrical conduction mechanism in solid polymer electrolytes: new concepts to Arrhenius equation, J. Soft Mater., 2013, 1, 10.1155/2013/323868 Christie, 1998, Selection of new Kynar-based electrolytes for lithium-ion batteries, J. Power Sources, 74, 77, 10.1016/S0378-7753(98)00036-6 Shubha, 2014, Study on effect of poly (ethylene oxide) addition and in-situ porosity generation on poly (vinylidene fluoride)-glass ceramic composite membranes for lithium polymer batteries, J. Power Sources, 267, 48, 10.1016/j.jpowsour.2014.05.074