Excellent ferroelectric properties sensitive to external voltage in PZT/LNO/NSTO heterostructures prepared by a sol-gel method
Tài liệu tham khảo
Martin, 2016, Thin-film ferroelectric materials and their applications, Nat. Rev. Mater., 2, 16087, 10.1038/natrevmats.2016.87
Kim, 2021, Ferroelectric field effect transistors: progress and perspective, APL Mater., 9, 10.1063/5.0035515
Lee, 2021, Fabrication and function examination of PZT-based MEMS accelerometers, Ceram. Int., 47, 24458, 10.1016/j.ceramint.2021.05.161
Vu, 2015, Ferroelectric and piezoelectric responses of (110) and (001)-oriented epitaxial Pb(Zr0.52Ti0.48)O3 thin films on all-oxide layers buffered silicon, Mater. Res. Bull., 72, 160, 10.1016/j.materresbull.2015.07.043
Zheng, 2022, Understanding and modulation of resistive switching behaviors in PbZr0.52Ti0.48O3/La0.67Sr0.33MnO3/Nb:SrTiO3 multilayer junctions, Appl. Surf. Sci., 574, 10.1016/j.apsusc.2021.151711
Wang, 2019, Resistive switching behavior in ferroelectric heterostructures, Small, 15
Bai, 2016, Resistive switching and modulation of Pb(Zr0.4Ti0.6)O3/Nb:SrTiO3 heterostructures, ACS Appl. Mater. Inter., 8, 32948, 10.1021/acsami.6b10992
Dong, 2020, Effect of La0.67Sr0.33MnO3 insertion layer on the ferroelectric and resistive switching behaviors of PbZr0.52Ti0.48O3/Nb:SrTiO3 heterostructures, Nano, 15, 10.1142/S1793292020500848
Ren, 2019, Highly robust flexible ferroelectric field effect transistors operable at high temperature with low‐power consumption, Adv. Funct. Mater., 30
Pei, 2019, pJ-level energy-consuming, low-voltage ferroelectric organic field-effect transistor memories, J. Phys. Chem. Lett., 10, 2335, 10.1021/acs.jpclett.9b00864
Hao, 2014, A comprehensive review on the progress of lead zirconate-based antiferroelectric materials, Prog. Mater. Sci., 63, 1, 10.1016/j.pmatsci.2014.01.002
Pintilie, 2007, Ferroelectric polarization-leakage current relation in high quality epitaxial Pb(Zr,Ti)O3 films, Phys. Rev. B, 75, 10.1103/PhysRevB.75.104103
Sun, 2022, Interface engineering in ferroelectrics: from films to bulks, J. Alloy. Compd., 909, 10.1016/j.jallcom.2022.164735
Hwang, 2019, Tuning perovskite oxides by strain: electronic structure, properties, and functions in (electro)catalysis and ferroelectricity, Mater. Today, 31, 100, 10.1016/j.mattod.2019.03.014
Aidhy, 2021, Coupling between interfacial strain and oxygen vacancies at complex-oxides interfaces, J. Appl. Phys., 129, 10.1063/5.0049001
Li, 2018, Improved ferroelectric properties of (100)-oriented PZT thin films deposited on stainless steel substrates with La0.5Sr0.5CoO3 buffer layers, J. Mater. Sci. Mater. Electron., 29, 14651, 10.1007/s10854-018-9601-3
Fang, 2012, Preparation and ferroelectric properties of (Na0.5Bi0.5)0.94Ba0.06TiO3 thin films deposited on Pt electrodes using LaNiO3 as buffer layer, Ceram. Int., 38, S83, 10.1016/j.ceramint.2011.04.055
Li, 2018, Epitaxial stress-free growth of high crystallinity ferroelectric PbZr0.52Ti0.48O3 on GaN/AlGaN/Si(111) Substrate, Adv. Mater. Interfaces, 5
Wang, 2019, Reduced leakage current, enhanced ferroelectric and dielectric properties in Mn-doped BiFeO3 thin film composited with TiO2 layers, Ceram. Int., 45, 12285, 10.1016/j.ceramint.2019.03.142
Leu, 2015, Effects of bismuth oxide buffer layer on BiFeO3 thin film, J. Am. Ceram. Soc., 98, 724, 10.1111/jace.13377
Damodaran, 2016, New modalities of strain-control of ferroelectric thin films, J. -Phys. -Condens. Mat., 28, 10.1088/0953-8984/28/26/263001
Han, 2014, Interface-induced nonswitchable domains in ferroelectric thin films, Nat. Commun., 5, 4693, 10.1038/ncomms5693
Zhong, 2014, Electrode dependence of resistive switching in Au/Ni–Au nanoparticle devices, RSC Adv., 4, 40924, 10.1039/C4RA05662K
Gao, 2011, Revealing the role of defects in ferroelectric switching with atomic resolution, Nat. Commun., 2, 591, 10.1038/ncomms1600
Ling, 1995, Studies on catalytic and conductive properties of LaNiO3 for oxidation of C2H5OH3CHO, and CH4, Catal. Today, 26, 79, 10.1016/0920-5861(95)00099-2
Chen, 1996, Effect of textured LaNiO3 electrode on the fatigue improvement of Pb(Zr0.53Ti0.47)O3 thin films, Appl. Phys. Lett., 68, 1430, 10.1063/1.116103
Cho, 1999, Heteroepitaxial growth and switching behaviors of PZT(53/47) films on LaNiO3-deposited LaAlO3 and SrTiO3 substrates, Mater. Sci. Eng. B, 64, 113, 10.1016/S0921-5107(99)00160-9
Meng, 2001, Enhanced fatigue property of PZT thin films using LaNiO3 thin layer as bottom electrode, Appl. Phys. A-Mater., 73, 323, 10.1007/s003390000696
Zhu, 2004, Growth and properties of (001)-oriented Pb(Zr0.52Ti0.48)O3/LaNiO3 films on Si(001) substrates with TiN buffer layers, J. Cryst. Growth, 273, 172, 10.1016/j.jcrysgro.2004.08.011
Zhang, 2019, Controlled spalling and flexible integration of PZT film based on LaNiO3 buffer layer, Ceram. Int., 45, 6373, 10.1016/j.ceramint.2018.12.123
Yin, 2020, Improved properties of Pb(Zr0.52Ti0.48)O3 films by hot plate annealing on LaNiO3 bottom electrode, J. Sol. -Gel. Sci. Technol., 96, 83, 10.1007/s10971-020-05378-w
Mojarad, 2012, A comprehensive study on the leakage current mechanisms of Pt/SrTiO3/Pt capacitor, J. Appl. Phys., 111, 10.1063/1.3673574
Lin, 2020, Oxygen vacancy enhanced ferroelectricity in BTO:SRO nanocomposite films, Acta Mater., 199, 9, 10.1016/j.actamat.2020.08.016
Li, 2014, Vertical-interface-manipulated conduction behavior in nanocomposite oxide thin films, ACS Appl. Mater. Inter., 6, 5356, 10.1021/am5001129
Lin, 2020, Significantly enhanced ferroelectric and dielectric properties in BaTiO3/LaNiO3 superlattices, Scr. Mater., 179, 102, 10.1016/j.scriptamat.2020.01.010