Excellent ductility and serration feature of metastable CoCrFeNi high-entropy alloy at extremely low temperatures
Tóm tắt
Từ khóa
Tài liệu tham khảo
Yang H, Huang C, Wu Z, et al. Analysis on the structural transformation of ITER TF conductor jacket tube. Adv Eng Mater, 2015, 17: 305–310
Ogata T, Nagai K, Ishikawa K. Vamas tests of structural materials at liquid helium temperature. In: Reed RP, Fickett FR, Summers LT, Stieg M (eds.). Advances in Cryogenic Engineering Materials. Boston: Springer, 1994, 1191–1198
Wang Y, Ma E, Valiev R, et al. Tough nanostructured metals at cryogenic temperatures. Adv Mater, 2004, 16: 328–331
Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science, 2014, 345: 1153–1158
Gludovatz B, Hohenwarter A, Thurston KVS, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat Commun, 2016, 7: 10602
Jo YH, Jung S, Choi WM, et al. Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy. Nat Commun, 2017, 8: 15719
Deng Y, Tasan CC, Pradeep KG, et al. Design of a twinninginduced plasticity high entropy alloy. Acta Mater, 2015, 94: 124–133
Laplanche G, Kostka A, Horst OM, et al. Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy. Acta Mater, 2016, 118: 152–163
Zhu YT, Liao XZ, Srinivasan SG, et al. Nucleation and growth of deformation twins in nanocrystalline aluminum. Appl Phys Lett, 2014, 85: 5049–5051
Blewitt TH, Coltman RR, Redman JK. Low-temperature deformation of copper single crystals. J Appl Phys, 1957, 28: 651–660
Zhu YT, Liao XZ, Wu XL. Deformation twinning in nanocrystalline materials. Prog Mater Sci, 2012, 57: 1–62
Wu Z, Bei H, Pharr GM, et al. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater, 2014, 81: 428–441
Liu B, Wang J, Liu Y, et al. Microstructure and mechanical properties of equimolar FeCoCrNi high entropy alloy prepared via powder extrusion. Intermetallics, 2016, 75: 25–30
Huo W, Zhou H, Fang F, et al. Strain-rate effect upon the tensile behavior of CoCrFeNi high-entropy alloys. Mater Sci Eng-A, 2017, 689: 366–369
Huo W, Fang F, Zhou H, et al. Remarkable strength of CoCrFeNi high-entropy alloy wires at cryogenic and elevated temperatures. Scripta Mater, 2017, 141: 125–128
Zhang Y, Zuo TT, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci, 2014, 61: 1–93
Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater, 2017, 122: 448–511
Lyu Z, Fan X, Lee C, et al. Fundamental understanding of mechanical behavior of high-entropy alloys at low temperatures: A review. J Mater Res, 2018, 33: 2998–3010
Laktionova MA, Tabchnikova ED, Tang Z, et al. Mechanical properties of the high-entropy alloy Ag0.5CoCrCuFeNi at temperatures of 4.2–300 K. Low Temperature Phys, 2013, 39: 630–632
Qiao JW, Ma SG, Huang EW, et al. Microstructural characteristics and mechanical behaviors of AlCoCrFeNi high-entropy alloys at ambient and cryogenic temperatures. MSF, 2011, 688: 419–425
Zhang W, Liaw PK, Zhang Y. Science and technology in highentropy alloys. Sci China Mater, 2018, 61: 2–22
Li DY, Zhang Y. The ultrahigh charpy impact toughness of forged AlxCoCrFeNi high entropy alloys at room and cryogenic temperatures. Intermetallics, 2016, 70: 24–28
Chen C, Ren J, Wang G, et al. Scaling behavior and complexity of plastic deformation for a bulk metallic glass at cryogenic temperatures. Phys Rev E, 2015, 92: 012113
Chen S, Yu L, Ren J, et al. Self-similar random process and chaotic behavior in serrated flow of high entropy alloys. Sci Rep, 2016, 6: 29798
Ren JL, Chen C, Wang G, et al. Dynamics of serrated flow in a bulk metallic glass. AIP Adv, 2011, 1: 032158
Ren JL, Chen C, Liu ZY, et al. Plastic dynamics transition between chaotic and self-organized critical states in a glassy metal via a multifractal intermediate. Phys Rev B, 2012, 86: 134303
Guo X, Xie X, Ren J, et al. Plastic dynamics of the Al0.5 CoCrCuFeNi high entropy alloy at cryogenic temperatures: Jerky flow, stair-like fluctuation, scaling behavior, and non-chaotic state. Appl Phys Lett, 2017, 111: 251905
Takens F. Detecting strange attractors in turbulence. In: Rand D, Young LS (eds). Dynamical Systems and Turbulence, Warwick 1980. Lecture Notes in Mathematics, vol 898. Heidelberg: Springer, 1981, 366–381
Packard NH, Crutchfield JP, Farmer JD, et al. Geometry from a time series. Phys Rev Lett, 1980, 45: 712–716
Fraser AM, Swinney HL. Independent coordinates for strange attractors from mutual information. Phys Rev A, 1986, 33: 1134–1140
Cao L. Practical method for determining the minimum embedding dimension of a scalar time series. Physica D-Nonlinear Phenomena, 1997, 110: 43–50
Wolf A, Swift JB, Swinney HL, et al. Determining Lyapunov exponents from a time series. Physica D-Nonlinear Phenomena, 1985, 16: 285–317
http://www.copper.org/resources/properties/144_8/
Estrin Y, Isaev NV, Lubenets SV, et al. Effect of microstructure on plastic deformation of Cu at low homologous temperatures. Acta Mater, 2006, 54: 5581–5590
Tobler RL, Berger JR, Bussiba A. Long-crack fatigue thresholds and short crack simulation at liquid helium temperature. In: Fickett FR, Reed RP (eds.). Advances in Cryogenic Engineering: Materials. Boston: Springer, 1992, 159–166
Das A, Tarafder S. Geometry of dimples and its correlation with mechanical properties in austenitic stainless steel. Scripta Mater, 2008, 59: 1014–1017
Otto F, Dlouhý A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater, 2013, 61: 5743–5755
Huang S, Li W, Lu S, et al. Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy. Scripta Mater, 2015, 108: 44–47
Pustovalov VV. Serrated deformation of metals and alloys at low temperatures. Low Temperature Phys, 2008, 34: 683–723
Zhang Y, Liu JP, Chen SY, et al. Serration and noise behaviors in materials. Prog Mater Sci, 2017, 90: 358–460
Antonaglia J, Xie X, Tang Z, et al. Temperature effects on deformation and serration behavior of high-entropy alloys (HEAs). JOM, 2014, 66: 2002–2008
Tirunilai AS, Sas J, Weiss KP, et al. Peculiarities of deformation of CoCrFeMnNi at cryogenic temperatures. J Mater Res, 2018, 33: 3287–3300
Grässel O, Krüger L, Frommeyer G, et al. High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development—properties—application. Int J Plast, 2000, 16: 1391–1409
Li Z, Pradeep KG, Deng Y, et al. Metastable high-entropy dualphase alloys overcome the strength–ductility trade-off. Nature, 2016, 534: 227–230
Lin Q, Liu J, An X, et al. Cryogenic-deformation-induced phase transformation in an FeCoCrNi high-entropy alloy. Mater Res Lett, 2018, 6: 236–243