Excellent ductility and serration feature of metastable CoCrFeNi high-entropy alloy at extremely low temperatures

Jun Peng Liu1, Xiaoxiang Guo2, Qingyun Lin3, Zhanbing He4, Xianghai An3, Laifeng Li5, Peter K. Liaw5, Xiaozhou Liao3, Liping Yu2, Junpin Lin4, Lu Xie4, Jing Ren2, Yong Zhang1
1Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, China
2School of Mathematics and Statistics, Zhengzhou University, Zhengzhou, China
3School of Aerospace, Mechanical & Mechatronic Engineering, The University of Sydney, Sydney, Australia
4State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, China
5Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Reed RP, Clark AF. Materials at low temperatures. American Society for Metals, Ohio, 1983

Yang H, Huang C, Wu Z, et al. Analysis on the structural transformation of ITER TF conductor jacket tube. Adv Eng Mater, 2015, 17: 305–310

Ogata T, Nagai K, Ishikawa K. Vamas tests of structural materials at liquid helium temperature. In: Reed RP, Fickett FR, Summers LT, Stieg M (eds.). Advances in Cryogenic Engineering Materials. Boston: Springer, 1994, 1191–1198

Wang Y, Ma E, Valiev R, et al. Tough nanostructured metals at cryogenic temperatures. Adv Mater, 2004, 16: 328–331

Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science, 2014, 345: 1153–1158

Gludovatz B, Hohenwarter A, Thurston KVS, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat Commun, 2016, 7: 10602

Jo YH, Jung S, Choi WM, et al. Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy. Nat Commun, 2017, 8: 15719

Deng Y, Tasan CC, Pradeep KG, et al. Design of a twinninginduced plasticity high entropy alloy. Acta Mater, 2015, 94: 124–133

Laplanche G, Kostka A, Horst OM, et al. Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy. Acta Mater, 2016, 118: 152–163

Zhu YT, Liao XZ, Srinivasan SG, et al. Nucleation and growth of deformation twins in nanocrystalline aluminum. Appl Phys Lett, 2014, 85: 5049–5051

Blewitt TH, Coltman RR, Redman JK. Low-temperature deformation of copper single crystals. J Appl Phys, 1957, 28: 651–660

Zhu YT, Liao XZ, Wu XL. Deformation twinning in nanocrystalline materials. Prog Mater Sci, 2012, 57: 1–62

Wu Z, Bei H, Pharr GM, et al. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater, 2014, 81: 428–441

Liu B, Wang J, Liu Y, et al. Microstructure and mechanical properties of equimolar FeCoCrNi high entropy alloy prepared via powder extrusion. Intermetallics, 2016, 75: 25–30

Huo W, Zhou H, Fang F, et al. Strain-rate effect upon the tensile behavior of CoCrFeNi high-entropy alloys. Mater Sci Eng-A, 2017, 689: 366–369

Huo W, Fang F, Zhou H, et al. Remarkable strength of CoCrFeNi high-entropy alloy wires at cryogenic and elevated temperatures. Scripta Mater, 2017, 141: 125–128

Zhang Y, Zuo TT, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci, 2014, 61: 1–93

Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater, 2017, 122: 448–511

Lyu Z, Fan X, Lee C, et al. Fundamental understanding of mechanical behavior of high-entropy alloys at low temperatures: A review. J Mater Res, 2018, 33: 2998–3010

Laktionova MA, Tabchnikova ED, Tang Z, et al. Mechanical properties of the high-entropy alloy Ag0.5CoCrCuFeNi at temperatures of 4.2–300 K. Low Temperature Phys, 2013, 39: 630–632

Qiao JW, Ma SG, Huang EW, et al. Microstructural characteristics and mechanical behaviors of AlCoCrFeNi high-entropy alloys at ambient and cryogenic temperatures. MSF, 2011, 688: 419–425

Zhang W, Liaw PK, Zhang Y. Science and technology in highentropy alloys. Sci China Mater, 2018, 61: 2–22

Li DY, Zhang Y. The ultrahigh charpy impact toughness of forged AlxCoCrFeNi high entropy alloys at room and cryogenic temperatures. Intermetallics, 2016, 70: 24–28

Vicsek T. Fractal growth phenomena. Singapore: World Scientific, 1992

Chen C, Ren J, Wang G, et al. Scaling behavior and complexity of plastic deformation for a bulk metallic glass at cryogenic temperatures. Phys Rev E, 2015, 92: 012113

Chen S, Yu L, Ren J, et al. Self-similar random process and chaotic behavior in serrated flow of high entropy alloys. Sci Rep, 2016, 6: 29798

Ren JL, Chen C, Wang G, et al. Dynamics of serrated flow in a bulk metallic glass. AIP Adv, 2011, 1: 032158

Ren JL, Chen C, Liu ZY, et al. Plastic dynamics transition between chaotic and self-organized critical states in a glassy metal via a multifractal intermediate. Phys Rev B, 2012, 86: 134303

Guo X, Xie X, Ren J, et al. Plastic dynamics of the Al0.5 CoCrCuFeNi high entropy alloy at cryogenic temperatures: Jerky flow, stair-like fluctuation, scaling behavior, and non-chaotic state. Appl Phys Lett, 2017, 111: 251905

Takens F. Detecting strange attractors in turbulence. In: Rand D, Young LS (eds). Dynamical Systems and Turbulence, Warwick 1980. Lecture Notes in Mathematics, vol 898. Heidelberg: Springer, 1981, 366–381

Packard NH, Crutchfield JP, Farmer JD, et al. Geometry from a time series. Phys Rev Lett, 1980, 45: 712–716

Fraser AM, Swinney HL. Independent coordinates for strange attractors from mutual information. Phys Rev A, 1986, 33: 1134–1140

Cao L. Practical method for determining the minimum embedding dimension of a scalar time series. Physica D-Nonlinear Phenomena, 1997, 110: 43–50

Wolf A, Swift JB, Swinney HL, et al. Determining Lyapunov exponents from a time series. Physica D-Nonlinear Phenomena, 1985, 16: 285–317

http://www.copper.org/resources/properties/144_8/

Estrin Y, Isaev NV, Lubenets SV, et al. Effect of microstructure on plastic deformation of Cu at low homologous temperatures. Acta Mater, 2006, 54: 5581–5590

Tobler RL, Berger JR, Bussiba A. Long-crack fatigue thresholds and short crack simulation at liquid helium temperature. In: Fickett FR, Reed RP (eds.). Advances in Cryogenic Engineering: Materials. Boston: Springer, 1992, 159–166

Das A, Tarafder S. Geometry of dimples and its correlation with mechanical properties in austenitic stainless steel. Scripta Mater, 2008, 59: 1014–1017

Otto F, Dlouhý A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater, 2013, 61: 5743–5755

Huang S, Li W, Lu S, et al. Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy. Scripta Mater, 2015, 108: 44–47

Zhang F, Wu Y, Lou H, et al. Polymorphism in a high-entropy alloy. Nat Commun, 2017, 8: 15687

Pustovalov VV. Serrated deformation of metals and alloys at low temperatures. Low Temperature Phys, 2008, 34: 683–723

Zhang Y, Liu JP, Chen SY, et al. Serration and noise behaviors in materials. Prog Mater Sci, 2017, 90: 358–460

Antonaglia J, Xie X, Tang Z, et al. Temperature effects on deformation and serration behavior of high-entropy alloys (HEAs). JOM, 2014, 66: 2002–2008

Tirunilai AS, Sas J, Weiss KP, et al. Peculiarities of deformation of CoCrFeMnNi at cryogenic temperatures. J Mater Res, 2018, 33: 3287–3300

Grässel O, Krüger L, Frommeyer G, et al. High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development—properties—application. Int J Plast, 2000, 16: 1391–1409

Li Z, Pradeep KG, Deng Y, et al. Metastable high-entropy dualphase alloys overcome the strength–ductility trade-off. Nature, 2016, 534: 227–230

Lin Q, Liu J, An X, et al. Cryogenic-deformation-induced phase transformation in an FeCoCrNi high-entropy alloy. Mater Res Lett, 2018, 6: 236–243

Miao J, Slone CE, Smith TM, et al. The evolution of the deformation substructure in a Ni-Co-Cr equiatomic solid solution alloy. Acta Mater, 2018, 132: 35–48