Examples of weakly amenable discrete quantum groups

Journal of Functional Analysis - Tập 265 - Trang 2164-2187 - 2013
Amaury Freslon1
1Univ. Paris Diderot, Sorbonne Paris Cité, UMR 7586, 8 place FM/13, 75013, Paris, France

Tài liệu tham khảo

Baaj, 1993, Unitaires multiplicatifs et dualité pour les produits croisés de C*-algèbres, Ann. Sci. École Norm. Sup., 26, 425, 10.24033/asens.1677 Banica, 1996, Théorie des représentations du groupe quantique compact libre O(n), C. R. Acad. Sci. Paris Sér. I Math., 322, 241 Banica, 1997, Le groupe quantique compact libre U(n), Comm. Math. Phys., 190, 143, 10.1007/s002200050237 Banica, 1999, Symmetries of a generic coaction, Math. Ann., 314, 763, 10.1007/s002080050315 Banica, 2002, Quantum groups and Fuss–Catalan algebras, Comm. Math. Phys., 226, 221, 10.1007/s002200200613 Bichon, 2006, Ergodic coactions with large multiplicity and monoidal equivalence of quantum groups, Comm. Math. Phys., 262, 703, 10.1007/s00220-005-1442-2 Brannan, 2012, Approximation properties for free orthogonal and free unitary quantum groups, J. Reine Angew. Math., 672, 223 Brannan Brown, 2008 Buchholz, 1999, Norm of convolution by operator-valued functions on free groups, Proc. Amer. Math. Soc., 127, 1671, 10.1090/S0002-9939-99-04660-2 Conway, 2000 Cowling, 1989, Completely bounded multipliers of the Fourier algebra of a simple lie group of real rank one, Invent. Math., 96, 507, 10.1007/BF01393695 Daws, 2012, Multipliers of locally compact quantum groups via Hilbert C*-modules, J. Lond. Math. Soc., 84, 385, 10.1112/jlms/jdr013 de Cannière, 1985, Multipliers of the Fourier algebras of some simple Lie groups and their discrete subgroups, Amer. J. Math., 107, 455, 10.2307/2374423 De Rijdt, 2010, Actions of monoidally equivalent compact quantum groups and applications to probabilistic boundaries, Ann. Inst. Fourier, 60, 169, 10.5802/aif.2520 Freslon, 2012, A note on weak amenability for free products of discrete quantum groups, C. R. Acad. Sci. Paris Sér. I Math., 350, 403, 10.1016/j.crma.2012.04.015 Junge, 2009, A representation theorem for locally compact quantum groups, Internat. J. Math., 20, 377, 10.1142/S0129167X09005285 Kraus, 1999, Approximation properties for Kac algebras, Indiana Univ. Math. J., 48, 469, 10.1512/iumj.1999.48.1660 Maes Ozawa, 2008, Weak amenability of hyperbolic groups, Groups Geom. Dyn., 2, 271, 10.4171/GGD/40 Ozawa, 2010, On a class of II1 factors with at most one Cartan subalgebra, Ann. of Math., 172, 713, 10.4007/annals.2010.172.713 Ozawa, 2010, On a class of II1 factors with at most one Cartan subalgebra II, Amer. J. Math., 132, 841, 10.1353/ajm.0.0121 Pisier, 2003 Raum, 2012, Isomorphisms and fusion rules of orthogonal free quantum groups and their free complexifications, Proc. Amer. Math. Soc., 140, 3207, 10.1090/S0002-9939-2012-11264-X Sołtan, 2010, Quantum SO(3) groups and quantum group actions on M2, J. Noncommut. Geom., 4, 1, 10.4171/JNCG/48 Vaes, 2007, The boundary of universal discrete quantum groups, exactness and factoriality, Duke Math. J., 140, 35, 10.1215/S0012-7094-07-14012-2 Van Daele, 1996, Universal quantum groups, Internat. J. Math., 7, 255, 10.1142/S0129167X96000153 Vergnioux, 2005, Orientation of quantum Cayley trees and applications, J. Reine Angew. Math., 580, 101, 10.1515/crll.2005.2005.580.101 Vergnioux, 2007, The property of rapid decay for discrete quantum groups, J. Operator Theory, 57, 303 Wang, 1995, Free products of compact quantum groups, Comm. Math. Phys., 167, 671, 10.1007/BF02101540 Wang, 1998, Quantum symmetry groups of finite spaces, Comm. Math. Phys., 195, 195, 10.1007/s002200050385 Weber Woronowicz, 1987, Compact matrix pseudogroups, Comm. Math. Phys., 111, 613, 10.1007/BF01219077 Woronowicz, 1998, Compact quantum groups, 845