Examples of weakly amenable discrete quantum groups
Tài liệu tham khảo
Baaj, 1993, Unitaires multiplicatifs et dualité pour les produits croisés de C*-algèbres, Ann. Sci. École Norm. Sup., 26, 425, 10.24033/asens.1677
Banica, 1996, Théorie des représentations du groupe quantique compact libre O(n), C. R. Acad. Sci. Paris Sér. I Math., 322, 241
Banica, 1997, Le groupe quantique compact libre U(n), Comm. Math. Phys., 190, 143, 10.1007/s002200050237
Banica, 1999, Symmetries of a generic coaction, Math. Ann., 314, 763, 10.1007/s002080050315
Banica, 2002, Quantum groups and Fuss–Catalan algebras, Comm. Math. Phys., 226, 221, 10.1007/s002200200613
Bichon, 2006, Ergodic coactions with large multiplicity and monoidal equivalence of quantum groups, Comm. Math. Phys., 262, 703, 10.1007/s00220-005-1442-2
Brannan, 2012, Approximation properties for free orthogonal and free unitary quantum groups, J. Reine Angew. Math., 672, 223
Brannan
Brown, 2008
Buchholz, 1999, Norm of convolution by operator-valued functions on free groups, Proc. Amer. Math. Soc., 127, 1671, 10.1090/S0002-9939-99-04660-2
Conway, 2000
Cowling, 1989, Completely bounded multipliers of the Fourier algebra of a simple lie group of real rank one, Invent. Math., 96, 507, 10.1007/BF01393695
Daws, 2012, Multipliers of locally compact quantum groups via Hilbert C*-modules, J. Lond. Math. Soc., 84, 385, 10.1112/jlms/jdr013
de Cannière, 1985, Multipliers of the Fourier algebras of some simple Lie groups and their discrete subgroups, Amer. J. Math., 107, 455, 10.2307/2374423
De Rijdt, 2010, Actions of monoidally equivalent compact quantum groups and applications to probabilistic boundaries, Ann. Inst. Fourier, 60, 169, 10.5802/aif.2520
Freslon, 2012, A note on weak amenability for free products of discrete quantum groups, C. R. Acad. Sci. Paris Sér. I Math., 350, 403, 10.1016/j.crma.2012.04.015
Junge, 2009, A representation theorem for locally compact quantum groups, Internat. J. Math., 20, 377, 10.1142/S0129167X09005285
Kraus, 1999, Approximation properties for Kac algebras, Indiana Univ. Math. J., 48, 469, 10.1512/iumj.1999.48.1660
Maes
Ozawa, 2008, Weak amenability of hyperbolic groups, Groups Geom. Dyn., 2, 271, 10.4171/GGD/40
Ozawa, 2010, On a class of II1 factors with at most one Cartan subalgebra, Ann. of Math., 172, 713, 10.4007/annals.2010.172.713
Ozawa, 2010, On a class of II1 factors with at most one Cartan subalgebra II, Amer. J. Math., 132, 841, 10.1353/ajm.0.0121
Pisier, 2003
Raum, 2012, Isomorphisms and fusion rules of orthogonal free quantum groups and their free complexifications, Proc. Amer. Math. Soc., 140, 3207, 10.1090/S0002-9939-2012-11264-X
Sołtan, 2010, Quantum SO(3) groups and quantum group actions on M2, J. Noncommut. Geom., 4, 1, 10.4171/JNCG/48
Vaes, 2007, The boundary of universal discrete quantum groups, exactness and factoriality, Duke Math. J., 140, 35, 10.1215/S0012-7094-07-14012-2
Van Daele, 1996, Universal quantum groups, Internat. J. Math., 7, 255, 10.1142/S0129167X96000153
Vergnioux, 2005, Orientation of quantum Cayley trees and applications, J. Reine Angew. Math., 580, 101, 10.1515/crll.2005.2005.580.101
Vergnioux, 2007, The property of rapid decay for discrete quantum groups, J. Operator Theory, 57, 303
Wang, 1995, Free products of compact quantum groups, Comm. Math. Phys., 167, 671, 10.1007/BF02101540
Wang, 1998, Quantum symmetry groups of finite spaces, Comm. Math. Phys., 195, 195, 10.1007/s002200050385
Weber
Woronowicz, 1987, Compact matrix pseudogroups, Comm. Math. Phys., 111, 613, 10.1007/BF01219077
Woronowicz, 1998, Compact quantum groups, 845