Examples of cylindrical Fano fourfolds
Tóm tắt
We construct four different families of smooth Fano fourfolds with Picard rank 1, which contain cylinders, i.e., Zariski open subsets of the form
$$Z\,{\times }\,{\mathbb {A}}^{1}$$
, where Z is a quasiprojective variety. The affine cones over such a fourfold admit effective
$${\mathbb {G}}_{{\text {a}}}$$
-actions. Similar constructions of cylindrical Fano threefolds were done previously in the papers by Kishimoto et al. (Affine Algebraic Geometry. CRM Proceedings & Lecture Notes, vol 54, pp 123–163, 2011; Osaka J Math 51(4):1093–1112, 2014).
Tài liệu tham khảo
Alzati, A., Sierra, J.C.: Special birational transformations of projective spaces (2012). arXiv:1203.5690
Ando, T.: On extremal rays of the higher-dimensional varieties. Invent. Math. 81(2), 347–357 (1985)
Andreatta, M., Wiśniewski, J.A.: On contractions of smooth varieties. J. Algebraic Geom. 7(2), 253–312 (1998)
Cheltsov, I.: Del Pezzo surfaces and local inequalities. In: Cheltsov, I., et al. (eds.) Automorphisms in Birational and Affine Geometry (Levico Terme, 2012). Springer Proceedings in Mathematics & Statistics, vol. 79, pp. 83–101. Springer, Berlin (2014)
Cheltsov, I., Park, J., Won, J.: Affine cones over smooth cubic surfaces (2013). J. Eur. Math. Soc. (to appear). arXiv:1303.2648
Debarre, O., Iliev, A., Manivel, L.: On the period map for prime Fano threefolds of degree 10. J. Algebraic Geom. 21(1), 21–59 (2012)
Dolgachev, I.V.: Classical Algebraic Geometry. Cambridge University Press, Cambridge (2012)
Fujita, T.: On the structure of polarized manifolds with total deficiency one, I. J. Math. Soc. Japan 32(4), 709–725 (1980)
Fujita, T.: On the structure of polarized manifolds with total deficiency one, II. J. Math. Soc. Japan 33(3), 415–434 (1981)
Fujita, T.: On the structure of polarized manifolds with total deficiency one, III. J. Math. Soc. Japan 36(1), 75–89 (1984)
Fulton, W.: Intersection Theory. 2nd ed. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 2. Springer, Berlin (1998)
Furushima, M.: Complex analytic compactifications of \(\mathbf{C}^3\). Compositio Math. 76(1–2), 163–196 (1990)
Furushima, M., Nakayama, N.: The family of lines on the Fano threefold \(V_5\). Nagoya Math. J. 116, 111–122 (1989)
Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Pure and Applied Mathematics. Wiley-Interscience, New York (1978)
Iskovskikh, V.A., Prokhorov, Yu.G.: Fano Varieties. In: Parshin, A.N., Shafarevich, I.R. (eds.) Algebraic Geometry V. Encyclopaedia of Mathematical Sciences, vol. 47. Springer, Berlin (1999)
Kishimoto, T., Prokhorov, Yu., Zaidenberg, M.: Group actions on affine cones. In: Affine Algebraic Geometry. CRM Proceedings & Lecture Notes, vol. 54, pp. 123–163. American Mathematical Society, Providence (2011)
Kishimoto, T., Prokhorov, Yu., Zaidenberg, M.: \(\mathbb{G}_{\rm a}\)-actions on affine cones. Transform. Groups 18(4), 1137–1153 (2013)
Kishimoto, T., Prokhorov, Yu., Zaidenberg, M.: Affine cones over Fano threefolds and additive group actions. Osaka J. Math. 51(4), 1093–1112 (2014)
Kishimoto, T., Prokhorov, Yu., Zaidenberg, M.: Unipotent group actions on del Pezzo cones. Algebraic Geom. 1(1), 46–56 (2014)
Mukai, S.: Biregular classification of Fano 3-folds and Fano manifolds of coindex 3. Proc. Nat. Acad. Sci. U.S.A. 86(9), 3000–3002 (1989)
Prokhorov, Yu.G.: Rationality constructions of some Fano fourfolds of index 2. Moscow Univ. Math. Bull. 48(2), 32–35 (1993)
Prokhorov, Yu.G.: Compactifications of \(\mathbf{C}^4\) of index \(3\). In: Tikhomirov, A., Tyurin, A. (eds.) Algebraic Geometry and its Applications (Yaroslavl, 1992). Aspects of Mathematics, vol. E25, pp. 159–169. Vieweg, Braunschweig (1994)
Prokhorov, Yu.: \(G\)-Fano threefolds, I. Adv. Geom. 13(3), 389–418 (2013)
Reid, M.: The Complete Intersection of Two or More Quadrics. PhD thesis, Trinity College, Cambridge (1972). http://homepages.warwick.ac.uk/~masda/3folds/qu.pdf
Shin, K.-H.: 3-Dimensional Fano varieties with canonical singularities. Tokyo J. Math. 12(2), 375–385 (1989)
Todd, J.A.: The locus representing the lines of four-dimensional space and its application to linear complexes in four dimensions. Proc. London Math. Soc. S2–30, 513–550 (1930)
