Ví dụ về các λ-hyperbề mặt compact trong các không gian Euclide

Science China Mathematics - Tập 64 - Trang 155-166 - 2019
Qing-Ming Cheng1, Guoxin Wei2
1Department of Applied Mathematics, Faculty of Sciences, Fukuoka University, Fukuoka, Japan
2School of Mathematical Sciences, South China Normal University, Guangzhou, China

Tóm tắt

Trong bài báo này, chúng tôi trước tiên xây dựng các λ-hyperbề mặt nhúng compact với kiểu hình học của torus, được gọi là λ-torus trong không gian Euclide ℝn+1. Sau đó, chúng tôi đưa ra nhiều λ-hyperbề mặt nhúng compact trong các không gian Euclide ℝn+1.

Từ khóa

#λ-hyperbề mặt #không gian Euclide #torus #nhúng compact

Tài liệu tham khảo

Angenent S. Shrinking doughnuts. In: Nonlinear Diffusion Equations and Their Equilibrium States. Boston-Basel-Berlin: Birkhäuser, 1992, 21–38 Brendle S. Embedded self-similar shrinkers of genus 0. Ann of Math (2), 2016, 183: 715–728 Cao H-D, Li H. A gap theorem for self-shrinkers of the mean curvature flow in arbitrary codimension. Calc Var Partial Differential Equations, 2013, 46: 879–889 Cheng Q-M, Wei G. A gap theorem for self-shrinkers. Trans Amer Math Soc, 2015, 367: 4895–4915 Cheng Q-M, Wei G. Complete λ-hypersurfaces of weighted volume-preserving mean curvature flow. Calc Var Partial Differential Equations, 2018, 57: 32 Colding T H, Minicozzi II W P. Generic mean curvature flow I: Generic singularities. Ann of Math (2), 2012, 175: 755–833 Ding Q, Xin Y L. The rigidity theorems of self shrinkers. Trans Amer Math Soc, 2014, 366: 5067–5085 do Carmo M, Dajczer M. Rotational hypersurfaces in spaces of constant curvature. Trans Amer Math Soc, 1983, 277: 685–709 Drugan G. An immersed S 2 self-shrinker. Trans Amer Math Soc, 2015, 367: 3139–3159 Drugan G, Kleene S J. Immersed self-shrinkers. Trans Amer Math Soc, 2017, 369: 7213–7250 Huisken G. Asymptotic behavior for singularities of the mean curvature flow. J Differential Geom, 1990, 31: 285–299 Kapouleas N, Kleene S J, Møller N M. Mean curvature self-shrinkers of high genus: Non-compact examples. J Reine Angew Math, 2018, 739: 1–39 Kleene S, Møller N M. Self-shrinkers with a rotation symmetry. Trans Amer Math Soc, 2014, 366: 3943–3963 Møller N M. Closed self-shrinking surfaces in ℝ3 via the torus. ArXiv:1111.7318, 2011 Nguyen X H. Construction of complete embedded self-similar surfaces under mean curvature flow. Part I. Trans Amer Math Soc, 2009, 361: 1683–1701 Nguyen X H. Construction of complete embedded self-similar surfaces under mean curvature flow. Part II. Adv Differential Equations, 2010, 15: 503–530 Nguyen X H. Construction of complete embedded self-similar surfaces under mean curvature flow, part III. Duke Math J, 2014, 163: 2023–2056