Examples of Twisted Cyclic Cocycles from Covariant Differential Calculi
Tóm tắt
For two covariant differential *-calculi, the twisted cyclic cocycle associated with the volume form is represented in terms of commutators
$$\left[ {\mathcal{F},\rho \left( x \right)} \right]$$
for some self-adjoint operator
$$\mathcal{F}$$
and some *-representation ρ of the underlying *-algebra.
Tài liệu tham khảo
Connes, A.: Noncommutative Geometry, Academic Press, San Diego, 1994.
Heckenberger, I.: Classification of left-covariant differential calculi on the quantum group SLq(2), J. Algebra 237 (2001), 203–237.
Klimek, S. and Lesniewski, A.: A two-parameter deformation of the unit disc, J. Funct. Anal. 115 (1993), 1–23.
Khalkhali, M. and Rangipour, B.: Invariant cyclic homology, math. KT/0207118.
Klimyk, K. A. and Schmüdgen, K.: Quantum Groups and their Representations, Springer, Berlin, 1997.
Kürsten, K.-D. and Wagner, E.: Invariant integration theory on non-compact quantum spaces:Quantum (n, 1)-matrix ball, math/QA/0305380.
Kustermans, J., Murphy, G. J. and Tuset, L.: Differential calculi over quantum groups and twisted cyclic cocycles, J. Geom. Phys. 44 (2003), 570–594.
Schmüdgen, K.: Commutator representations of covariant differential calculi on quantum groups, Lett. Math. Phys. 59 (2002), 95–106.
Schmüdgen, K.: Covariant differential calculi on quantum spaces, NTZ-preprint 24, Leipzig, 1991.
Schüler, A.: Differential Hopf algebras on quantum groups of type A, J. Algebra 214 (1999), 479–518.
Schmüdgen, K. and Wagner, E.: Hilbert space representations of cross product algebras, J. Funct. Anal. 200 (2003), 451–493.
Shklyarov, D., Sinel'shchikov, S. and Vaksman, L. L.: On function theory in quantum disc: Integral representations, math. QA/9908015.
Woronowicz, S. L.: Twisted SU(2) group. An example of a noncommutative differential calculus, Publ. RIMS Kyoto Univ. 23 (1987), 117–181.