Examining the relations between spatial skills and mathematical performance: A meta-analysis

Kinnari Atit1, Jason Power2, Terri Pigott3, Ji‐Hyun Lee4, Elyssa A. Geer5, David H. Uttal6, Colleen M. Ganley5, Sheryl A. Sorby7
1School of Education, University of California, Riverside, 1207 Sproul Hall, Riverside, CA, 92521, USA
2School of Education, University of Limerick, Limerick, Ireland
3College of Education and Human Development and School of Public Health, Georgia State University, Atlanta, GA, USA
4College of Education, The University of Texas at Austin, Austin, TX, USA
5Department of Psychology, Florida State University, Tallahassee, FL, USA
6School of Education and Social Policy, Northwestern University, Evanston, IL, USA
7College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ackerman, P. L., & Wolman, S. D. (2007). Determinants and validity of self-estimates of abilities and self-concept measures. Journal of Experimental Psychology. Applied, 13(2), 57–78. https://doi.org/10.1037/1076-898X.13.2.57

Altman, D. G. (1990). Practical Statistics for Medical Research. CRC Press.

American Mathematical Society (2020). Homepage. Retrieved November 24, 2020, from https://www.ams.org/home/page

Atit, K., Gagnier, K., & Shipley, T. F. (2015). Student gestures aid penetrative thinking. Journal of Geoscience Education, 63(1), 66–72. https://doi.org/10.5408/14-008.1

Atit, K., Power, J. R., Veurink, N., Uttal, D. H., Sorby, S., Panther, G., Msall, C., Fiorella, L., & Carr, M. (2020a). Examining the role of spatial skills and mathematics motivation on middle school mathematical achievement. International Journal of STEM Education, 7(1), 38. https://doi.org/10.1186/s40594-020-00234-3

Atit, K., Uttal, D. H., & Stieff, M. (2020b). Situating space: Using a discipline-focused lens to examine spatial thinking skills. Cognitive Research: Principles and Implications, 5(1), 19. https://doi.org/10.1186/s41235-020-00210-z

Aud, S., Hussar, W., Johnson, F., Kena, G., Roth, E., Manning, E., Wang, X., & Zhang, J. (2012). The condition of education 2012. NCES 2012-045. National Center for Education Statistics. http://files.eric.ed.gov/fulltext/ED532315.pdf

Battista, M. T. (1990). Spatial visualization and gender differences in high school geometry. Journal for Research in Mathematics Education, 21(1), 47–60. https://doi.org/10.2307/749456

Berg, D. H. (2008). Working memory and arithmetic calculation in children: The contributory roles of processing speed, short-term memory, and reading. Journal of Experimental Child Psychology, 99(4), 288–308. https://doi.org/10.1016/j.jecp.2007.12.002

Berman, N. G., & Parker, R. A. (2002). Meta-analysis: Neither quick nor easy. BMC Medical Research Methodology, 2, 10. https://doi.org/10.1186/1471-2288-2-10

Bethell-Fox, C. E., & Shepard, R. N. (1988). Mental rotation: Effects of stimulus complexity and familiarity. Journal of Experimental Psychology. Human Perception and Performance, 14(1), 12–23. https://doi.org/10.1037/0096-1523.14.1.12

Bonny, J. W., & Lourenco, S. F. (2015). Individual differences in children’s approximations of area correlate with competence in basic geometry. Learning and Individual Differences, 44, 16–24. https://doi.org/10.1016/j.lindif.2015.11.001

Borenstein, M., Hedges, L., Higgins, J., & Rothstein, H. (2005). Comprehensive Meta-analysis (Version 2). Biostat.

Brown, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. Sage Focus Editions, 154, 136-136.

Burte, H., Gardony, A. L., Hutton, A., & Taylor, H. A. (2017). Think3d!: Improving mathematics learning through embodied spatial training. Cognitive Research: Principles and Implications, 2(1), 13. https://doi.org/10.1186/s41235-017-0052-9

Carr, M., Steiner, H. H., Kyser, B., & Biddlecomb, B. (2008). A comparison of predictors of early emerging gender differences in mathematics competency. Learning and Individual Differences, 18(1), 61–75. https://doi.org/10.1016/j.lindif.2007.04.005

Carroll, J. B. (1993). Human Cognitive Abilities: A Survey of Factor-Analytic Studies. Cambridge University Press. https://market.android.com/details?id=book-jp9dt4_0_cIC

Casey, M. B., Nuttall, R., Pezaris, E., & Benbow, C. P. (1995). The influence of spatial ability on gender differences in mathematics college entrance test scores across diverse samples. Developmental Psychology, 31(4), 697–705. https://doi.org/10.1037/0012-1649.31.4.697

Casey, M. B., Nuttall, R. L., & Pezaris, E. (1997). Mediators of gender differences in mathematics college entrance test scores: a comparison of spatial skills with internalized beliefs and anxieties. Developmental Psychology, 33(4), 669–680. https://doi.org/10.1037//0012-1649.33.4.669

Casey, B. M., Dearing, E., Vasilyeva, M., Ganley, C. M., & Tine, M. (2011). Spatial and numerical predictors of measurement performance: The moderating effects of community income and gender. Journal of Educational Psychology, 103(2), 296–311. https://doi.org/10.1037/a0022516

Casey, B. M., Pezaris, E., Fineman, B., Pollock, A., Demers, L., & Dearing, E. (2015). A longitudinal analysis of early spatial skills compared to arithmetic and verbal skills as predictors of fifth-grade girls’ math reasoning. Learning and Individual Differences, 40, 90–100. https://doi.org/10.1016/j.lindif.2015.03.028

Casey, B. M., Lombardi, C. M., Pollock, A., Fineman, B., & Pezaris, E. (2017). Girls’ spatial skills and arithmetic strategies in first grade as predictors of fifth-grade analytical math reasoning. Journal of Cognition and Development: Official Journal of the Cognitive Development Society, 18(5), 530–555. https://doi.org/10.1080/15248372.2017.1363044

Cattell, R. B. (1971). Abilities: Their Structure, Growth, and Action. Houghton Mifflin.

Ceci, S. J., & Williams, W. M. (2011). Understanding current causes of women’s underrepresentation in science. Proceedings of the National Academy of Sciences of the United States of America, 108(8), 3157–3162. https://doi.org/10.1073/pnas.1014871108

Cheng, Y. L., & Mix, K. S. (2014). Spatial training improves children’s mathematics ability. Journal of Cognition and Development, 15(1), 2-11.

Cheung, M.W.L. (2015). {metaSEM}: An R package for meta-analysis using structural equation modeling. Frontiers in Psychology, 5, 1-7. https://doi.org/10.3389/fpsyg.2014.01521

Cheung, M. W.-L., & Chan, W. (2005). Meta-analytic structural equation modeling: A two-stage approach. Psychological Methods, 10(1), 40–64. https://doi.org/10.1037/1082-989X.10.1.40

Cirino, P. T., Tolar, T. D., Fuchs, L. S., & Huston-Warren, E. (2016). Cognitive and numerosity predictors of mathematical skills in middle school. Journal of Experimental Child Psychology, 145, 95–119. https://doi.org/10.1016/j.jecp.2015.12.010

Clifford, E. (2008). Visual-spatial processing and mathematics achievement: the predictive ability of the visual-spatial measures of the Stanford-Binet intelligence scales, and the Wechsler intelligence scale for children. University of South Dakota. http://search.proquest.com/openview/7909403d7b16e45eca563dbc3826e3eb/1?pq-origsite=gscholar&cbl=18750&diss=y

College Board (2020). SAT Math Test.https://collegereadiness.collegeboard.org/sat/inside-the-test/math

Conway, A. R. A., Kane, M. J., & Engle, R. W. (2003). Working memory capacity and its relation to general intelligence. Trends in Cognitive Sciences, 7(12), 547–552. https://doi.org/10.1016/j.tics.2003.10.005

Corsi, P. M. (1972). Human Memory and the Medial Temporal Region of the Brain. McGill University.

Cox, J. W. (1928). Mechanical aptitude. Methuen.

Cui, J., Zhang, Y., Cheng, D., Li, D., & Zhou, X. (2017). Visual form perception can be a cognitive correlate of lower-level math categories for teenagers. Frontiers in Psychology, 8, 1336. https://doi.org/10.3389/fpsyg.2017.01336

Deary, I. J., Strand, S., Smith, P., & Fernandes, C. (2007). Intelligence and educational achievement. Intelligence, 35(1), 13-21.

Delgado, A. R., & Prieto, G. (2004). Cognitive mediators and sex-related differences in mathematics. Intelligence, 32(1), 25–32. https://doi.org/10.1016/S0160-2896(03)00061-8

Edens, K., & Potter, E. (2007). The relationship of drawing and mathematical problem solving: Draw for math tasks. Studies in Art Education, 48(3), 282–298. https://doi.org/10.1080/00393541.2007.11650106

Egger, M., Davey Smith, G., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ, 315(7109), 629–634. https://doi.org/10.1136/bmj.315.7109.629

Ekstrom, R. B., French, J. W., Harman, H., & Derman, D. (1976). Kit of Factor-referenced cognitive tests (revised edition). Educational Testing Service, Princeton, NJ.

Embretson, S. E. (1995). The role of working memory capacity and general control processes in intelligence. Intelligence, 20(2), 169–189. https://doi.org/10.1016/0160-2896(95)90031-4

Flanagan, D. P. & Kaufman, A. S. (2004). Essentials of WISC-IV Assessment. John Wiley & Sons.

Frick, A. (2019). Spatial transformation abilities and their relation to later mathematics performance. Psychological Research, 83(7), 1465–1484. https://doi.org/10.1007/s00426-018-1008-5

Fry, A. F. & Hale, S. (1996). Processing speed, working memory, and fluid intelligence: Evidence for a developmental cascade. Psychological Science, 7(4), 237-241.

Ganley, C. M, & Vasilyeva, M. (2011). Sex differences in the relation between math performance, spatial skills, and attitudes. Journal of Applied Developmental Psychology, 32(4), 235–242. https://doi.org/10.1016/j.appdev.2011.04.001

Geary, D. C. (2011). Cognitive predictors of achievement growth in mathematics: A five-year longitudinal study. Developmental Psychology, 47(6), 1539-1552. https://doi.org/10.1037/a0025510

Geer, E. A., & Ganley, C. M. (2021). Sex differences in social and spatial perspective taking: A replication and extension of Tarampi et al., (2016). Unpublished manuscript.

Geer, E. A., Quinn, J. M., & Ganley, C. M. (2019). Relations between spatial skills and math performance in elementary school children: A longitudinal investigation. Developmental Psychology, 55(3), 637–652. https://doi.org/10.1037/dev0000649

Gilles, P.-Y., & Bailleux, C. (2001). Personality traits and abilities as predictors of academic achievement. European Journal of Psychology of Education, 16(1), 3–15. https://doi.org/10.1007/BF03172991

Gilligan, K. A., Flouri, E., & Farran, E. K. (2017). The contribution of spatial ability to mathematical achievement in middle childhood. Journal of Experimental Child Psychology, 163, 107–125. https://doi.org/10.1016/j.jecp.2017.04.016

Gottfredson, L. S., & Deary, I. J. (2004). Intelligence predicts health and longevity, but why? Current Directions in Psychological Science, 13(1), 1–4. https://doi.org/10.1111/j.0963-7214.2004.01301001.x

Green, C. T., Bunge, S. A., Briones Chiongbian, V., Barrow, M., & Ferrer, E. (2017). Fluid reasoning predicts future mathematical performance among children and adolescents. Journal of Experimental Child Psychology, 157, 125–143. https://doi.org/10.1016/j.jecp.2016.12.005

GrÉGoire, J., & Van Der Linden, M. (1997). Effect of age on forward and backward digit spans. Neuropsychology, Development, and Cognition. Section B, Aging, Neuropsychology and Cognition, 4(2), 140–149. https://doi.org/10.1080/13825589708256642

Gunderson, E. A., Ramirez, G., Beilock, S. L., & Levine, S. C. (2012). The relation between spatial skill and early number knowledge: the role of the linear number line. Developmental Psychology, 48(5), 1229–1241. https://doi.org/10.1037/a0027433

Haciomeroglu, E. S. (2015). The role of cognitive ability and preferred mode of processing in students’ calculus performance. Eurasia Journal of Mathematics, Science & Technology Education, 11(5), 1165–1179. http://www.ejmste.com/pdf-51586-11492?filename=The%20Role%20of%20Cognitive.pdf

Haciomeroglu, E. S. (2016). Object-spatial visualization and verbal cognitive styles, and their relation to cognitive abilities and mathematical performance. Educational Sciences: Theory and Practice, 16(3), 987–1003. https://eric.ed.gov/?id=EJ1115147

Halford, G. S., Wilson, W. H., Phillips, S. (1998). Processing capacity defined by relational complexity: Implications for comparative, developmental, and cognitive psychology. Behavioral and Brain Sciences, 21(6), 803-831.

Halpern, D. F., Benbow, C. P., Geary, D. C., Gur, R. C., Hyde, J. S., & Gernsbacher, M. A. (2007). The science of sex differences in science and mathematics. Psychological Science in the Public Interest: A Journal of the American Psychological Society, 8(1), 1–51. https://doi.org/10.1111/j.1529-1006.2007.00032.x

Hanline, M. F., Milton, S., & Phelps, P. C. (2010). The relationship between preschool block play and reading and maths abilities in early elementary school: A longitudinal study of children with and without disabilities. Early Child Development and Care, 180(8), 1005–1017. https://doi.org/10.1080/03004430802671171

Harter, C. A. & Ku, H. (2008) The effects of spatial contiguity within computer-based instruction of group personalized two-step mathematics word problems. Computers in Human Behavior,24(4), 1668-1685. https://doi.org/10.1016/j.chb.2007.06.006

Hawes, Z. & Ansari, D. (2020). What explains the relationship between spatial and mathematical skills? A review of evidence from brain and behavior. Psychonomic Bulletin & Review, 27, 465-482. https://doi.org/10.3758/s13423-019-01694-7

Hawes, Z., Moss, J., Caswell, B., & Poliszczuk, D. (2015). Effects of mental rotation training on children’s spatial and mathematics performance: A randomized controlled study. Trends in Neuroscience and Education, 4(3). 60-68.

Hawes, Z., Moss, J., Caswell, B., Seo, J., Ansari, D. (2019). Relations between numerical, spatial, and executive function skills and mathematical achievement: A latent-variable approach. Cognitive Psychology, 109, 68-90.

Hedges, L. V., Tipton, E., & Johnson, M. C. (2010). Robust variance estimation in meta-regression with dependent effect size estimates. Research Synthesis Methods, 1(1), 39–65. https://doi.org/10.1002/jrsm.5

Hegarty, M., & Kozhevnikov, M. (1999). Types of visual–spatial representations and mathematical problem solving. Journal of Educational Psychology, 91(4), 684–689. https://doi.org/10.1037/0022-0663.91.4.684

Holyoak, K. J. (2012). Analogy and relational reasoning. In K. J. Holyoak & R. G. Morrison (Eds.), The Oxford Handbook of Thinking and Reasoning (pp. 234–259). Oxford University Press.

Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55.

Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in parietal cortex. In Nature Reviews Neuroscience (Vol. 6, Issue 6, pp. 435–448). https://doi.org/10.1038/nrn1684

Hyde, J. S., Fennema, E., & Lamon, S. J. (1990). Gender differences in mathematics performance: a meta-analysis. Psychological Bulletin, 107(2), 139–155. https://doi.org/10.1037/0033-2909.107.2.139

Imbo, I., Vandierendonck, A., & De Rammelaere, S. (2007). The role of working memory in the carry operation of mental arithmetic: number and value of the carry. Quarterly Journal of Experimental Psychology, 60(5), 708–731. https://doi.org/10.1080/17470210600762447

Jacob, R. & Parkinson, J. (2015). The potential for school-based interventions that target executive function to improve academic achievement: A review. Review of Educational Research, 85(4), 512-552.

Jensen, A. R. (1998). The Science of Mental Ability. Praeger Publishers.

Johnson, C. M. (2017). Mathematics performance of sixth-grade students in single-gender and mixed classrooms in a large urban school system (Publication No. 10604090) [Doctoral dissertation, Grand Canyon University]. ProQuest Dissertation Publishing.

Kirby, J. R., & Boulter, D. R. (1999). Spatial ability and transformational geometry. European Journal of Psychology of Education, 14(2), 283. https://doi.org/10.1007/BF03172970

Klingberg, T. (2006). Development of a superior frontal-intraparietal network for visuo-spatial working memory. Neuropsychologia, 44(11), 2171-2177.

Kovacs, K., & Conway, A. R. A. (2016). Process overlap theory: A unified account of the general factor of intelligence. Psychological Inquiry, 27(3), 151–177. https://doi.org/10.1080/1047840X.2016.1153946

Krawczyk, D. C. (2012). The cognition and neuroscience of relational reasoning. Brain Research, 1428, 13-23.

Kytällä, M., & Lehto, J. E. (2008). Some factors underlying mathematical performance: The role of visuospatial working memory and non-verbal intelligence. European Journal of Psychology of Education, 23(1), 77. https://doi.org/10.1007/BF03173141

Kyttälä, M., Aunio, P., Lehto, J. E., Van Luit, J., & Hautamäki, J. (2003). Visuospatial working memory and early numeracy. Educational and Child Psychology, 20(3), 65–76.

Li, Y., & Geary, D. C. (2013). Developmental gains in visuospatial memory predict gains in mathematical achievement. In PLoS ONE (Vol. 8, Issue 7, p. e70160). https://doi.org/10.1371/journal.pone.0070160

Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: a meta-analysis. Child Development, 56(6), 1479–1498. https://www.ncbi.nlm.nih.gov/pubmed/4075870

Lombardi, C. M., Casey, B. M., Pezaris, E., Shadmehr, M., & Jong, M. (2019). Longitudinal analysis of associations between 3-D mental rotation and mathematics reasoning skills during middle school: Across and within genders. Journal of Cognition and Development: Official Journal of the Cognitive Development Society, 20(4), 487–509. https://doi.org/10.1080/15248372.2019.1614592

Lowrie, T., Logan, T., & Ramful, A. (2017). Visuospatial training improves elementary students’ mathematics performance. British Journal of Educational Technology: Journal of the Council for Educational Technology. https://doi.org/10.1111/bjep.12142

Lowrie, T., Logan, T., & Hegarty, M. (2019). The influence of spatial visualization training on students’ spatial reasoning and mathematics performance. Journal of Cognition and Development.https://doi.org/10.1080/15248372.2019.1653298

McGrew, K. S., & Wendling, B. J. (2010). Cattell--Horn--Carrollcognitive-achievement relations: What we have learned from the past 20 years of research. Psychology in the Schools, 47(7), 651–675. https://doi.org/10.1002/pits.20497

McKenzie, B., Bull, R., & Gray, C. (2003). The effects of phonological and visual-spatial interference on children’s arithmetical performance. Educational and Child Psychology, 20(3), 93–108.

Merriam Webster (n.d.) Definition of MATHEMATICS. Retrieved November 18, 2020, from https://www.merriam-webster.com/dictionary/mathematics

Mix, K. S. (2019). Why are spatial skill and mathematics related? In Child Development Perspectives (Vol. 13, Issue 2, pp. 121–126). https://doi.org/10.1111/cdep.12323

Mix, K. S., & Cheng, Y.-L. (2012). The relation between space and math: developmental and educational implications. Advances in Child Development and Behavior, 42, 197–243. https://doi.org/10.1016/b978-0-12-394388-0.00006-x

Mix, K. S., Levine, S. C., Cheng, Y.-L., Young, C., Hambrick, D. Z., Ping, R., & Konstantopoulos, S. (2016). Separate but correlated: The latent structure of space and mathematics across development. Journal of Experimental Psychology. General, 145(9), 1206–1227. https://doi.org/10.1037/xge0000182

Mix, K. S., Levine, S. C., Cheng, Y.-L., Young, C. J., Hambrick, D. Z., & Konstantopoulos, S. (2017). The latent structure of spatial skills and mathematics: A replication of the two-factor model. Journal of Cognition and Development: Official Journal of the Cognitive Development Society, 18(4), 465–492. https://doi.org/10.1080/15248372.2017.1346658

Miyake, A., & Shah, P. (1999). Models of working memory: Mechanisms of active maintenance and executive control. Cambridge University Press.

Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49–100. https://doi.org/10.1006/cogp.1999.0734

Miyake, A., Friedman, N. P., Rettinger, D. A., Shah, P., & Hegarty, M. (2001). How are visuospatial working memory, executive functioning, and spatial abilities related? A latent-variable analysis. Journal of Experimental Psychology. General, 130(4), 621–640. https://doi.org/10.1037//0096-3445.130.4.621

Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., Stewart, L. A., & PRISMA-P Group. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic Reviews, 4, 1. https://doi.org/10.1186/2046-4053-4-1

Möhring, W., Newcombe, N. S., & Frick, A. (2015). The relation between spatial thinking and proportional reasoning in preschoolers. Journal of Experimental Child Psychology, 132, 213–220. https://doi.org/10.1016/j.jecp.2015.01.005

Morosanova, V. I., Fomina, T. G., Kovas, Y., & Bogdanova, O. Y. (2016). Cognitive and regulatory characteristics and mathematical performance in high school students. Personality and Individual Differences, 90, 177–186. https://doi.org/10.1016/j.paid.2015.10.034

Mullis, I. V. S., Martin, M. O., Foy, P., Arora, A. (2012). TIMSS 2011 International Results in Mathematics. International Association for the Evaluation of Educational Achievement. https://eric.ed.gov/?id=ed544554

National Center for Education Statistics (2018). Annual reports program 2018. https://nces.ed.gov/programs/digest/d18/figures/fig_01.asp?referrer=figures

Neale, M. C., & Miller, M. B. (1997). The use of likelihood-based confidence intervals in genetic models. Behavior genetics, 27(2), 113–120.

Newcombe, N. S. (2010). Picture this: Increasing math and science learning by improving spatial thinking. American Educator, 34(2), 29. https://eric.ed.gov/?id=EJ889152

Newcombe, N. S., & Shipley, T. F. (2015). Thinking about spatial thinking: New typology, new assessments. Studying Visual and Spatial Reasoning for Design Creativity, 179–192. https://doi.org/10.1007/978-94-017-9297-4_10

Novack, M. A., Congdon, E. L., Hemani-Lopez, N., & Goldin-Meadow, S. (2014). From action to abstraction: using the hands to learn math. Psychological Science, 25(4), 903–910. https://doi.org/10.1177/0956797613518351

Nuttall, R. L., Casey, M. B., & Pezaris, E. (2005). Spatial ability as a mediator of gender differences on mathematics tests: A biological-environmental framework. In A. M. Gallagher (Ed.), Gender differences in mathematics: An integrative psychological approach, (Vol. 351, pp. 121–142). Cambridge University Press, xvi. https://psycnet.apa.org/fulltext/2005-04568-006.pdf

Olver, A. (2013). Investigating early spatial and numerical skills in junior kindergarten children learning in an inquiry-and play-based environment [Master's Thesis, University of Toronto]. Tspace. https://tspace.library.utoronto.ca/handle/1807/42637

Oostermeijer, M., Boonen, A. J. H., & Jolles, J. (2014). The relation between children’s constructive play activities, spatial ability, and mathematical word problem-solving performance: a mediation analysis in sixth-grade students. Frontiers in Psychology, 5, 782. https://doi.org/10.3389/fpsyg.2014.00782

Organization for Economic Cooperation and Development (2012). Programme for International Student Assessment (PISA) Results from PISA 2012.https://www.oecd.org/unitedstates/PISA-2012-results-US.pdf

Organization for Economic Development (2016). Country Note: Key Findings from PISA 2015 for the United States.Oecd.org/pisa/PISA-2015-United-States.pdf

Oswald, F. L., McAbee, S. T., Redick, T. S., & Hambrick, D. Z. (2015). The development of a short domain-general measure of working memory capacity. Behavior Research Methods, 47(4), 1343–1355. https://doi.org/10.3758/s13428-014-0543-2

Paterson, D. G., Elliot, R., Anderson, L. D., Toops, H. A., & Heidbreder, E. (1930). Minnesota mechanical ability tests: The report of a research investigation subsidized by the committee on human migrations of the national research council and conducted in the department of psychology of the University of Minnesota. University of Minnesota Press.

Paunonen, S. V., & Hong, R. Y. (2010). Self-efficacy and the prediction of domain-specific cognitive abilities. Journal of Personality, 78(1), 339–360. https://doi.org/10.1111/j.1467-6494.2009.00618.x

Payne, C. M. (2008). So Much Reform, So Little Change: The Persistence of Failure in Urban Schools. Harvard Education Press.

Peng, P., Yang, X., & Meng, X. (2017). The relation between approximate number system and early arithmetic: The mediation role of numerical knowledge. Journal of Experimental Child Psychology, 157, 111–124. https://doi.org/10.1016/j.jecp.2016.12.011

Peng, P., Wang, T., Wang, C., Lin, X. (2019). A meta-analysis on the relation between fluid intelligence and reading/mathematics: Effects of tasks, age, and social economics status. Psychological Bulletin, 145(2), 189-236.

Peters, M., Laeng, B., Latham, K., Jackson, M., Zaiyouna, R., & Richardson, C. (1995). A redrawn Vandenberg and Kuse mental rotations test: different versions and factors that affect performance. Brain and Cognition, 28(1), 39–58. https://doi.org/10.1006/brcg.1995.1032

Pustejovsky, J. E. (2020). clubSandwich: Cluster-Robust(Sandwich) Variance Estimators with Small-Sample Corrections. R package version 0.5.1. https://CRAN.R-project.org/package=clubSandwich

Pustejovsky, J. E., & Rodgers, M. A. (2019). Testing for funnel plot asymmetry of standardized mean differences. Research Synthesis Methods, 10(1), 57–71. https://doi.org/10.1002/jrsm.1332

Pustejovsky, J. E., & Tipton, E. (2021). Meta-analysis with robust variance estimation: Expanding the range of working models. Manuscript under review. Osf.io. https://osf.io/vyfcj/download

Pyke, C. L. (2003). The use of symbols, words, and diagrams as indicators of mathematical cognition: A causal model. Journal for Research in Mathematics Education, 34(5), 406–432. https://doi.org/10.2307/30034794

Raghubar, K. P., Barnes, M. A., & Hecht, S. A. (2010). Working memory and mathematics: A review of developmental, individual difference, and cognitive approaches. Learning and Individual Differences, 20(2), 110–122. https://doi.org/10.1016/j.lindif.2009.10.005

Reuhkala, M. (2001). Mathematical skills in ninth graders: Relationship with visuo-spatial abilities and working memory. Educational Psychology Review, 21(4), 387–399. https://doi.org/10.1080/01443410120090786

Rodán, A., Contreras, M. J., Elosúa, M. R., & Gimeno, P. (2016). Experimental but not sex differences of a mental rotation training program on adolescents. Frontiers in Psychology, 7, 1050. https://doi.org/10.3389/fpsyg.2016.01050

Rodgers, M. A., & Pustejovsky, J. E. (2020). Evaluating meta-analytic methods to detect selective reporting in the presence of dependent effect sizes. Psychological Methods. https://doi.org/10.1037/met0000300

Schmitt, S. A., Korucu, I., Napoli, A. R., Bryant, L. M., & Purpura, D. J. (2018). Using block play to enhance preschool children’s mathematics and executive functioning: A randomized controlled trial. Early Childhood Research Quarterly, 44, 181–191.

Schneider, W. J., & McGrew, K. S. (2012). The Cattell-Horn-Carroll model of intelligence. In D. P. Flanagan & P. L. Harrison (Eds.), Contemporary Intellectual Assessment: Theories, Tests, and Issues (pp. 99–144). The Guilford Press. 

Seitz, K., & Schumann-Hengsteler, R. (2002). Phonological loop and central executive processes in mental addition and multiplication. Psychologische Beitrage, 44(2), 275–303.

Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171(3972), 701–703. https://doi.org/10.1126/science.171.3972.701

Simms, V., Clayton, S., Cragg, L., Gilmore, C., & Johnson, S. (2016). Explaining the relationship between number line estimation and mathematical achievement: The role of visuomotor integration and visuospatial skills. Journal of Experimental Child Psychology, 145, 22–33. https://doi.org/10.1016/j.jecp.2015.12.004

Skagerlund, K., & Träff, U. (2016). Processing of space, time, and number contributes to mathematical abilities above and beyond domain-general cognitive abilities. Journal of Experimental Child Psychology, 143, 85–101. https://doi.org/10.1016/j.jecp.2015.10.016

Sorby, S. A. (2007). Developing 3D spatial skills for engineering students. Australasian Journal of Engineering Education, 13(1), 1–11. https://doi.org/10.1080/22054952.2007.11463998

Sorby, S., Casey, B., Veurink, N., & Dulaney, A. (2013). The role of spatial training in improving spatial and calculus performance in engineering students. Learning and Individual Differences, 26, 20–29. https://doi.org/10.1016/j.lindif.2013.03.010

Stannard, L., Wolfgang, C. H., Jones, I., & Phelps, P. (2001). A longitudinal study of the predictive relations among construction play and mathematical achievement. Early Child Development and Care, 167(1), 115–125. https://doi.org/10.1080/0300443011670110

Stevenson, H. W., Parker, T., Wilkinson, A., Hegion, A., & Fish, E. (1976). Longitudinal study of individual differences in cognitive development and scholastic achievement. Journal of Educational Psychology, 68(4), 377–400. https://doi.org/10.1037/0022-0663.68.4.377

Swanson, H. L., & Beebe-Frankenberger, M. (2004). The relationship between working memory and mathematical problem solving in children at risk and not at risk for serious math difficulties. Journal of Educational Psychology, 96(3), 471–491. https://doi.org/10.1037/0022-0663.96.3.471

Tartre, L. A., & Fennema, E. (1995). Mathematics achievement and gender: A longitudinal study of selected cognitive and affective variables [grades 6-12]. Educational Studies in Mathematics, 28(3), 199–217. https://doi.org/10.1007/bf01274173

Taub, G. E., Floyd, R. G., Keith, T. Z., & McGrew, K. S. (2008). Effects of general and broad cognitive abilities on mathematical achievement. School Psychology Quarterly, 23, 187-198.

Thurstone, L. L., & Thurstone, T. G. (1941). Factorial studies of intelligence. Psychometric Monographs, 2, 94. https://psycnet.apa.org/fulltext/1941-03743-001.pdf

Tipton, E. (2015). Small sample adjustments for robust variance estimation with meta-regression. Psychological Methods, 20(3), 375–393. https://doi.org/10.1037/met0000011

Tolar, T. D., Lederberg, A. R., & Fletcher, J. M. (2009). A structural model of algebra achievement: computational fluency and spatial visualization as mediators of the effect of working memory on algebra achievement. Educational Psychology Review, 29(2), 239–266. https://doi.org/10.1080/01443410802708903

Uttal, D. H., Miller, D. I., & Newcombe, N. S. (2013). Exploring and enhancing spatial thinking. Current Directions in Psychological Science, 22(5), 367-373. https://doi.org/10.1177/0963721413484756

Valenzeno, L., Alibali, M. W., & Klatzky, R. (2003). Teachers’ gestures facilitate students’ learning: A lesson in symmetry. Contemporary Educational Psychology, 28(2), 187–204. https://www.sciencedirect.com/science/article/pii/S0361476X02000073

van Garderen, D. (2006). Spatial visualization, visual imagery, and mathematical problem solving of students with varying abilities. Journal of Learning Disabilities, 39(6), 496–506. https://doi.org/10.1177/00222194060390060201

Vandenberg, S. G., & Kuse, A. R. (1978). Mental rotations, a group test of three-dimensional spatial visualization. Perceptual and Motor Skills, 47(2), 599–604. https://doi.org/10.2466/pms.1978.47.2.599

Vendetti, M. S., & Bunge, S. A. (2014). Evolutionary and developmental changes in the lateral frontoparietal network: a little goes a long way for higher-level cognition. Neuron, 84(5), 906–917. https://doi.org/10.1016/j.neuron.2014.09.035

Ventura, M., Shute, V., Wright, T., & Zhao, W. (2013). An investigation of the validity of the virtual spatial navigation assessment. Frontiers in Psychology, 4, 852. https://doi.org/10.3389/fpsyg.2013.00852

Verdine, B. N., Golinkoff, R. M., Hirsh-Pasek, K., Newcombe, N. S., Filipowicz, A. T., & Chang, A. (2014). Deconstructing building blocks: Preschoolers’ spatial assembly performance relates to early mathematical skills. Child Development, 85(3), 1062–1076. https://doi.org/10.1111/cdev.12165

Verdine, B. N., Golinkoff, R. M., Hirsh-Pasek, K., & Newcombe, N. (2017). Links between spatial and mathematical skills across the preschool years. Monographs of Society for Research in Child Development, 82(1), 7–30. https://doi.org/10.1111/mono.12280.

Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36. https://doi.org/10.18637/jss.v036.i03https://lirias.kuleuven.be/1059637?limo=0

Voyer, D. (1998). Mathematics, gender, spatial performance, and cerebral organization: A suppression effect in talented students. Roeper Review, 20(4), 251–258. https://doi.org/10.1080/02783199809553902

Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101(4), 817–835. https://doi.org/10.1037/a0016127

Walberg, H. J. (1984). Improving the productivity of America’s schools. Educational Leadership, 41, 19–27.

Wang, M.-T., & Degol, J. L. (2017). Gender gap in science, technology, engineering, and mathematics (STEM): Current knowledge, implications for practice, policy, and future directions. Educational Psychology Review, 29(1), 119–140. https://doi.org/10.1007/s10648-015-9355-x

Wechsler, D. (1976). Wechsler intelligence scale for children-revised. San Antonio, TX: Psychological Corporation. 

Wechsler, D. (1981). WAIS-R manual: Wechsler adult intelligence scale-revised. Psychological Corporation.

Wechsler, D. (2012). Wechsler preschool and primary scale of intelligence—fourth edition. The Psychological Corporation San Antonio.

Wei, W., Yuan, H., Chen, C., & Zhou, X. (2012). Cognitive correlates of performance in advanced mathematics. The British Journal of Educational Psychology, 82(1), 157–181. https://doi.org/10.1111/j.2044-8279.2011.02049.x

Wilson, S. J., Polanin, J. R., & Lipsey, M. W. (2016). Fitting meta-analytic structural equation models with complex datasets. Research Synthesis Methods, 7(2), 121–139. https://doi.org/10.1002/jrsm.1199

Wolfgang, C. H., Stannard, L. L., & Jones, I. (2001). Block play performance among preschoolers as a predictor of later school achievement in mathematics. Journal of Research in Childhood Education: JRCE / Association for Childhood Education International, 15(2), 173–180. https://doi.org/10.1080/02568540109594958

Wong, W. I. (2017). The space-math link in preschool boys and girls: Importance of mental transformation, targeting accuracy, and spatial anxiety. The British Journal of Developmental Psychology, 35(2), 249–266. https://doi.org/10.1111/bjdp.12161

Woodcock, R. W., McGrew, K. S., Mather, N., & Schrank, F. A. (2001). Woodcock Johnson III Tests of Cognitive Abilities. Riverside Publishing.

Wrigley, J. (1958). Factorial nature of ability in elementary mathematics. British Journal of Educational Psychology, 28, 61–78.

Xie, F., Zhang, L., Chen, X., & Xin, Z. (2019). Is spatial ability related to mathematical ability: a meta-analysis. Educational Psychology Review. https://doi.org/10.1007/s10648-019-09496-y

Zhang, X., & Lin, D. (2017). Does growth rate in spatial ability matter in predicting early arithmetic competence? Learning and Instruction, 49, 232–241. https://doi.org/10.1016/j.learninstruc.2017.02.003

Zhang, X., & Lin, D. (2018). Cognitive precursors of word reading versus arithmetic competencies in young Chinese children. Early Childhood Research Quarterly, 42, 55–65. https://doi.org/10.1016/j.ecresq.2017.08.006

Zhang, X., Koponen, T., Räsänen, P., Aunola, K., Lerkkanen, M.-K., & Nurmi, J.-E. (2014). Linguistic and spatial skills predict early arithmetic development via counting sequence knowledge. Child Development, 85(3), 1091–1107. https://doi.org/10.1111/cdev.12173