Examining the effect of crack initiation angle on fracture behavior of orthotropic materials under mixed-mode I/II loading
Tài liệu tham khảo
Anaraki, 2010, Mixed mode fracture criterion for wood based on a reinforcement microcrack damage model, Mater. Sci. Eng., A, 527, 7184, 10.1016/j.msea.2010.08.004
Anaraki, 2010, General mixed mode I/II fracture criterion for wood considering T-stress effects, Mater. Des., 31, 4461, 10.1016/j.matdes.2010.04.055
Anderson, 2017
Bahrami, 2018, Predictions of fracture load, crack initiation angle, and trajectory for V-notched Brazilian disk specimens under mixed mode I/II loading with negative mode I contributions, Int. J. Damage Mech., 27, 1173, 10.1177/1056789517726360
Bernard, 2018, Experimental investigation of mixed mode fracture of tropical wood material, Procedia Struct. Integrity, 13, 347, 10.1016/j.prostr.2018.12.058
Beuth, 1989, Analysis of crack extension in anisotropic materials based on local normal stress, Theor. Appl. Fract. Mech., 11, 27, 10.1016/0167-8442(89)90023-2
Bobet, 1998, Fracture coalescence in rock-type materials under uniaxial and biaxial compression, Int. J. Rock Mech. Min. Sci., 35, 863, 10.1016/S0148-9062(98)00005-9
M. B. Buczek, C. T. Herakovich, Finite element models for predicting crack growth characteristics in composite materials, Virginia Polytechnic Inst and State Univ Blacksburg Coll of Engineering, 1982.
Buczek, 1985, A normal stress criterion for crack extension direction in orthotropic composite materials, J. Compos. Mater., 19, 544, 10.1177/002199838501900606
Budiansky, 1976, Elastic moduli of a cracked solid, Int. J. Solids Struct., 12, 81, 10.1016/0020-7683(76)90044-5
Chabchoub, 2019, Numerical estimation of the mode I strain energy release rate in woven-ply thermoplastic-based composites at high temperature based on Gθ method, Theor. Appl. Fract. Mech., 101, 169, 10.1016/j.tafmec.2019.02.018
Chalivendra, 2009, Mixed-mode crack-tip stress fields for orthotropic functionally graded materials, Acta Mech., 204, 51, 10.1007/s00707-008-0047-1
Chang, 1981, On the maximum strain criterion—a new approach to the angled crack problem, Eng. Fract. Mech., 14, 107, 10.1016/0013-7944(81)90021-7
Daneshjoo, 2018, A new mixed mode I/II failure criterion for laminated composites considering fracture process zone, Theor. Appl. Fract. Mech., 98, 48, 10.1016/j.tafmec.2018.09.004
Daneshjoo, 2019, Physics of delamination onset in unidirectional composite laminates under mixed-mode I/II loading, Eng. Fract. Mech., 211, 82, 10.1016/j.engfracmech.2019.02.013
De Moura, 2018
Dourado, 2008, Comparison of fracture properties of two wood species through cohesive crack simulations, Compos. A Appl. Sci. Manuf., 39, 415, 10.1016/j.compositesa.2007.08.025
Erarslan, 2019, Analysing mixed mode (I–II) fracturing of concrete discs including chevron and straight-through notch cracks, Int. J. Solids Struct., 167, 79, 10.1016/j.ijsolstr.2019.03.005
F. Erdogan, G. Sih, On the crack extension in plates under plane loading and transverse shear, 1963.
Erdogan, 1963, On the crack extension in plates under plane loading and transverse shear, J. Basic Eng., 85, 519, 10.1115/1.3656897
Fakoor, 2020, A micromechanical approach for mixed mode I/II failure assessment of cracked highly orthotropic materials such as wood, Theor. Appl. Fract. Mech., 109, 10.1016/j.tafmec.2020.102740
Fakoor, 2013, Transition angle, a novel concept for predicting the failure mode in orthotropic materials, Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 227, 2157, 10.1177/0954406212470905
Fakoor, 2018, A new macro-mechanical approach for investigation of damage zone effects on mixed mode I/II fracture of orthotropic materials, Acta Mech., 229, 3537, 10.1007/s00707-018-2132-4
Fakoor, 2017, The influence of fiber-crack angle on the crack tip parameters in orthotropic materials, Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 231, 418, 10.1177/0954406215617195
Fakoor, 2021, The effect of T-stress on mixed mode I/II fracture of composite materials: Reinforcement isotropic solid model in combination with maximum shear stress theory, Int. J. Solids Struct., 229, 10.1016/j.ijsolstr.2021.111145
Farid, 2019, Mixed mode I/II fracture criterion for arbitrary cracks in orthotropic materials considering T-stress effects, Theor. Appl. Fract. Mech., 99, 147, 10.1016/j.tafmec.2018.11.015
Gdoutos, 2020, Fracture mechanics: an introduction, Springer Nat.
Golewski, 2018, An assessment of microcracks in the Interfacial Transition Zone of durable concrete composites with fly ash additives, Compos. Struct., 200, 515, 10.1016/j.compstruct.2018.05.144
Golewski, 2019, A new principles for implementation and operation of foundations for machines: A review of recent advances, Struct. Eng. Mech., Int'l J., 71, 317
Golewski, 2019, Physical characteristics of concrete, essential in design of fracture-resistant, dynamically loaded reinforced concrete structures, Mater. Des. Process. Commun., 1, e82
Golewski, 2019, Measurement of fracture mechanics parameters of concrete containing fly ash thanks to use of Digital Image Correlation (DIC) method, Measurement, 135, 96, 10.1016/j.measurement.2018.11.032
Golewski, 2021, The beneficial effect of the addition of fly ash on reduction of the size of microcracks in the ITZ of concrete composites under dynamic loading, Energies, 14, 668, 10.3390/en14030668
Golewski, 2021, Validation of the favorable quantity of fly ash in concrete and analysis of crack propagation and its length–Using the crack tip tracking (CTT) method–In the fracture toughness examinations under Mode II, through digital image correlation, Constr. Build. Mater., 296, 10.1016/j.conbuildmat.2021.122362
Golewski, 2021, Evaluation of fracture processes under shear with the use of DIC technique in fly ash concrete and accurate measurement of crack path lengths with the use of a new crack tip tracking method, Measurement, 10.1016/j.measurement.2021.109632
G. L. Golewski, T. Sadowski, Macroscopic evaluation of fracture processes in fly ash concrete, in Solid State Phenomena, 2016, vol. 254: Trans Tech Publ, pp. 188-193.
Golewski, 2021, Studies of fracture toughness in concretes containing fly ash and silica fume in the first 28 days of curing, Materials, 14, 319, 10.3390/ma14020319
M. A. Gregory, C. Herakovich, Prediction of crack extension direction in unidirectional composites, Virginia Polytechnic Inst and State Univ Blacksburg Dept of Engineering…, 1984.
Huang, 2014, Determination of forming limit and fracture limit curves using digital image correlation, SAE Int. J. Mater. Manuf., 7, 574, 10.4271/2014-01-0982
Hunt, 1982, Mode II fracture toughness of wood measured by a mixed-mode test method, J. Mater. Sci. Lett., 1, 77, 10.1007/BF00731031
M. Hussain, S. Pu, J. Underwood, Strain energy release rate for a crack under combined mode I and mode II, in Fracture analysis: Proceedings of the 1973 national symposium on fracture mechanics, part II, 1974: ASTM International.
Jernkvist, 2001, Fracture of wood under mixed mode loading: I. Derivation of fracture criteria, Eng. Fract. Mech., 68, 549, 10.1016/S0013-7944(00)00127-2
Jernkvist, 2001, Fracture of wood under mixed mode loading: II. Experimental investigation of Picea abies, Eng. Fract. Mech., 68, 565, 10.1016/S0013-7944(00)00128-4
Kashtalyan, 2018, Coupled stress and energy criterion for multiple matrix cracking in cross-ply composite laminates, Int. J. Solids Struct., 139, 189, 10.1016/j.ijsolstr.2018.01.033
Z. Khaji, M. Fakoor, A Semi-theoretical criterion based on the combination of strain energy release rate and strain energy density concepts (STSERSED): Establishment of a new approach to predict the fracture behavior of orthotropic materials, Theoretical and Applied Fracture Mechanics, p. 103290, 2022.
Z. Khaji, M. Fakoor, H. M. Farid, R. Alderliesten, Applying the new experimental midpoint concept on strain energy density for fracture assessment of composite materials, Theor. Appl. Fracture Mech., p. 103522, 2022.
Khaji, 2021, Strain energy release rate in combination with reinforcement isotropic solid model (SERIS): a new mixed-mode I/II criterion to investigate fracture behavior of orthotropic materials, Theor. Appl. Fract. Mech., 113, 10.1016/j.tafmec.2021.102962
Khansari, 2019, Orthotropic mode II shear test fixture: Iosipesque modification, Eng. Solid Mech., 7, 93, 10.5267/j.esm.2019.4.003
Li, 2015, Coupled interfacial imperfections and their effects on the fracture behavior of a layered multiferroic cylinder, Acta Mech., 226, 1183, 10.1007/s00707-014-1246-6
Limin, 2018, Micro-crack damage in strip of fracture process zone, Int. J. Solids Struct., 147, 29, 10.1016/j.ijsolstr.2018.04.008
Mahmoudi, 2020, Damage behaviour of laminated composites during fatigue loading, Fatigue Fract. Eng. Mater. Struct., 43, 698, 10.1111/ffe.13152
Maiti, 1983, Comparison of the criteria for mixed mode brittle fracture based on the preinstability stress-strain field Part I: Slit and elliptical cracks under uniaxial tensile loading, Int. J. Fract., 23, 281, 10.1007/BF00020696
Mall, 1983, Criterion for mixed mode fracture in wood, J. Eng. Mech., 109, 680, 10.1061/(ASCE)0733-9399(1983)109:3(680)
Mirsayar, 2022, Maximum principal strain criterion for fracture in orthotropic composites under combined tensile/shear loading, Theor. Appl. Fract. Mech., 118, 10.1016/j.tafmec.2022.103291
Nemat-Nasser, 1990, Elastic solids with microdefects, 297
Nobile, 2005, Fracture analysis for orthotropic cracked plates, Compos. Struct., 68, 285, 10.1016/j.compstruct.2004.03.020
Nuismer, 1975, An energy release rate criterion for mixed mode fracture, Int. J. Fract., 11, 245, 10.1007/BF00038891
Odounga, 2018, Mode I fracture of tropical woods using grid method, Theor. Appl. Fract. Mech., 95, 1, 10.1016/j.tafmec.2018.02.006
Romanowicz, 2019, A non-local stress fracture criterion accounting for the anisotropy of the fracture toughness, Eng. Fract. Mech., 214, 544, 10.1016/j.engfracmech.2019.04.033
Romanowicz, 2008, Verification of a non-local stress criterion for mixed mode fracture in wood, Eng. Fract. Mech., 75, 3141, 10.1016/j.engfracmech.2007.12.006
Saouma, 1987, Mixed mode crack propagation in homogeneous anisotropic solids, Eng. Fract. Mech., 27, 171, 10.1016/0013-7944(87)90166-4
Sih, 1974, Strain-energy-density factor applied to mixed mode crack problems, Int. J. Fract., 10, 305, 10.1007/BF00035493
Sih, 1965, On cracks in rectilinearly anisotropic bodies, Int. J. Fract.Mech., 1, 189, 10.1007/BF00186854
Su, 2003, Numerical solutions of two-dimensional anisotropic crack problems, Int. J. Solids Struct., 40, 4615, 10.1016/S0020-7683(03)00310-X
Szostak, 2020, Improvement of strength parameters of cement matrix with the addition of siliceous fly ash by using nanometric CSH seeds, Energies, 13, 6734, 10.3390/en13246734
Van der Put, 2007, A new fracture mechanics theory for orthotropic materials like wood, Eng. Fract. Mech., 74, 771, 10.1016/j.engfracmech.2006.06.015
Wang, 2019, Fracture analysis of superconducting composites with a sandwich structure based on electromagnetic–thermal coupled model, Acta Mech., 230, 4435, 10.1007/s00707-019-02510-y
Wang, 2020, An extended analytical model for predicting the compressive failure behaviors of composite laminate with an arbitrary elliptical delamination, Int. J. Solids Struct., 185, 439, 10.1016/j.ijsolstr.2019.09.002
E. Wu, Application of fracture mechanics to anisotropic plates, 1967.
Yoshihara, 2006, Mode I fracture toughness estimation of wood by DCB test, Compos. A Appl. Sci. Manuf., 37, 2105, 10.1016/j.compositesa.2005.12.001
Yoshihara, 2019, Mode II fracture mechanics properties of solid wood measured by the tensile-and compressive-loading shear fracture tests, Eng. Fract. Mech., 213, 72, 10.1016/j.engfracmech.2019.03.046
Zhang, 2020, Mode II interfacial fracture characterization of foam core sandwich materials at elevated temperatures: the effects of frictional stresses between the crack edges, Int. J. Solids Struct., 193, 28, 10.1016/j.ijsolstr.2020.02.001