Examining the Economic and Energy Aspects of Manganese Oxide in Li-Ion Batteries

Kandeeban Rajagopalan1, R. Brindha2, Sangeetha Velusamy3, Seeram Ramakrishna2, Arunachala Mada Kannan4, Manojkumar Kaliyannan3, K. Saminathan3
1Kongunadu Arts and Science College
2Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
3Department of Chemistry, Kongunadu Arts and Science College, Coimbatore, India
4Fuel Cell Research Laboratory, The Polytechnic School, Ira A. Fulton Schools of Engineering, Arizona State University, Mesa, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abedini A, Daud AR, Hamid MAA, Othman NK, Saion E (2013) A review on radiation-induced nucleation and growth of colloidal metallic nanoparticles. Nanoscale Res Lett 8(1):1–10. https://doi.org/10.1186/1556-276X-8-474

Abokyi E, Appiah-Konadu P, Abokyi F, Oteng-Abayie EF (2019) Industrial growth and emissions of CO2 in Ghana: the role of financial development and fossil fuel consumption. Energy Rep 5:1339–1353. https://doi.org/10.1016/j.egyr.2019.09.002

Alagar S, Madhuvilakku R, Mariappan R, Piraman S (2019) Nano-architectured porous Mn2O3 spheres/cubes vs rGO for asymmetric supercapacitors applications in novel solid-state electrolyte. J Power Sources 441:227181. https://doi.org/10.1016/J.JPOWSOUR.2019.227181

Ali GAM, Yusoff MM, Shaaban ER, Chong KF (2017) High performance MnO2 nanoflower supercapacitor electrode by electrochemical recycling of spent batteries. Ceram Int 43(11):8440–8448. https://doi.org/10.1016/j.ceramint.2017.03.195

Alshareef HN, Chen W, Rakhi RB, Hu L, Xie X, Cui Y (2011) High performance nanostructured supercapacitors on a sponge. Nano Lett 11:5165–5172

Alves L, Paixão SM (2011) Toxicity evaluation of 2-hydroxybiphenyl and other compounds involved in studies of fossil fuels biodesulphurisation. Biores Technol 102(19):9162–9166. https://doi.org/10.1016/j.biortech.2011.06.070

Andooz A, Eqbalpour M, Kowsari E, Ramakrishna S, Cheshmeh ZA (2022) A comprehensive review on pyrolysis of E-waste and its sustainability. Journal of Cleaner Production 333(December 2021):130191. https://doi.org/10.1016/j.jclepro.2021.130191

Ansari SA, Parveen N, Kotb HM, Alshoaibi A (2020) Hydrothermally derived three-dimensional porous hollow double-walled Mn2O3 nanocubes as superior electrode materials for supercapacitor applications. Electrochim Acta 355:136783. https://doi.org/10.1016/j.electacta.2020.136783

Asafu-Adjaye J, Byrne D, Alvarez M (2016) Economic growth, fossil fuel and non-fossil consumption: a pooled mean group analysis using proxies for capital. Energy Econ 60:345–356. https://doi.org/10.1016/j.eneco.2016.10.016

Bahgat M, Farghaly FE, Abdel Basir SM, Fouad OA (2007) Synthesis, characterization and magnetic properties of microcrystalline lithium cobalt ferrite from spent lithium-ion batteries. J Mater Process Technol 183(1):117–121. https://doi.org/10.1016/j.jmatprotec.2006.10.005

Barreto RA (2018) Fossil fuels, alternative energy and economic growth. Econ Model 75(June):196–220. https://doi.org/10.1016/j.econmod.2018.06.019

Bridges A, Felder FA, McKelvey K, Niyogi I (2015) Uncertainty in energy planning: estimating the health impacts of air pollution from fossil fuel electricity generation. Energy Res Soc Sci 6:74–77. https://doi.org/10.1016/j.erss.2014.12.002

Bubulinca C, Sapurina I, Kazantseva NE, Vilčáková J, Cheng Q, Sáha P (2020) Fabrication of a flexible binder-free lithium manganese oxide cathode for secondary Li - Ion batteries. J Phys Chem Solids 137:109222. https://doi.org/10.1016/j.jpcs.2019.109222

Cen J, Li Z, Jiang F (2018) Experimental investigation on using the electric vehicle air conditioning system for lithium-ion battery thermal management. Energy Sustain Dev 45:88–95. https://doi.org/10.1016/j.esd.2018.05.005

Chen K, Zhao F, Hao H, Liu Z (2019) Selection of lithium-ion battery technologies for electric vehicles under China’s new energy vehicle credit regulation. Energy Procedia 158:3038–3044. https://doi.org/10.1016/j.egypro.2019.01.987

Chen S, Zhu J, Wu X, Han Q, Wang X (2010) Graphene oxide MnO 2. ACS Nano 4(5):2822–2830. https://doi.org/10.1021/nn901311t

Chen X, Chen Y, Zhou T, Liu D, Hu H, Fan S (2015) Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries. Waste Manage 38(1):349–356. https://doi.org/10.1016/j.wasman.2014.12.023

Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin LC (2011) Graphene and nanostructured MnO2 composite electrodes for supercapacitors. Carbon 49(9):2917–2925. https://doi.org/10.1016/j.carbon.2011.02.068

Chepeliev M, van der Mensbrugghe D (2020) Global fossil-fuel subsidy reform and Paris Agreement. Energy Economics 85:104598. https://doi.org/10.1016/j.eneco.2019.104598

Chiari L, Zecca A (2011) Constraints of fossil fuels depletion on global warming projections. Energy Policy 39(9):5026–5034. https://doi.org/10.1016/j.enpol.2011.06.011

Ching S, Kriz DA, Luthy KM, Njagi EC, Suib SL (2011) Self-assembly of manganese oxide nanoparticles and hollow spheres. Catalytic activity in carbon monoxide oxidation. Chem Commun 47(29):8286–8288. https://doi.org/10.1039/c1cc11764e3

Cui X, Wang Y, Chen Z, Zhou H, Xu Q, Sun P, Zhou J, Xia L, Sun Y, Lu Y (2015) Preparation of pompon-like MnO/carbon nanotube composite microspheres as anodes for lithium ion batteries. Electrochim Acta 180:858–865. https://doi.org/10.1016/j.electacta.2015.09.012

Cusenza MA, Bobba S, Ardente F, Cellura M, Di Persio F (2019) Energy and environmental assessment of a traction lithium-ion battery pack for plug-in hybrid electric vehicles. J Clean Prod 215:634–649. https://doi.org/10.1016/j.jclepro.2019.01.056

Deivamani D, Perumal P, Enigo Chitra AS, Boomashri M (2017) Electrochemical characterization of Zn-doped LiNiMnCoO2 cathode materials for Li-ion battery. Asian J Chem 29(8):1731–1734. https://doi.org/10.14233/ajchem.2017.20597

Dagani R (1993) Lithium-manganese oxide rechargeable battery. Chem Eng News 71(1):34–35. https://doi.org/10.1021/cen-v071n001.p034

Day C, Day G (2017) Climate change, fossil fuel prices and depletion: the rationale for a falling export tax. Econ Model 63(January):153–160. https://doi.org/10.1016/j.econmod.2017.01.006

Devaraj S, Munichandraiah N (2007) The effect of nonionic surfactant Triton X-100 during electrochemical deposition of MnO[sub 2] on its capacitance properties. J Electrochem Soc 154(10):A901. https://doi.org/10.1149/1.2759618

Devaraj S, Munichandraiah N (2008) Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J Phys Chem C 112(11):4406–4417. https://doi.org/10.1021/jp7108785

Ding X, Zhang D, Cheng J, Wang B, Luk PCK (2019) An improved Thevenin model of lithium-ion battery with high accuracy for electric vehicles. Appl Energy 254(February):113615. https://doi.org/10.1016/j.apenergy.2019.113615

Dong X, Xu Y, Xiong L, Sun X, Zhang Z (2013) Sodium substitution for partial lithium to significantly enhance the cycling stability of Li2MnO3 cathode material. J Power Sources 243:78–87. https://doi.org/10.1016/j.jpowsour.2013.05.155

Dong X, Xu Y, Yan S, Mao S, Xiong L, Sun X (2015) Towards low-cost, high energy density Li2MnO3 cathode materials. Journal of Materials Chemistry A 3(2):670–679. https://doi.org/10.1039/c4ta02924k

Du Pasquier A, Blyr APC (1999a) Mechanism for limited 55C storage performance of Li1.05Mn1.95O4 Li1.05Mn1.95O4 Electrodes. 146(2):428–436

Du Pasquier A, Blyr APC (1999b) Mechanism for limited 55C storage performance of Li1.05Mn1.95O4 Li1.05Mn1.95O4 Electrodes. 146(2):428–436

Ellingsen LAW, Hung CR, Strømman AH (2017) Identifying key assumptions and differences in life cycle assessment studies of lithium-ion traction batteries with focus on greenhouse gas emissions. Transp Res Part d: Transp Environ 55:82–90. https://doi.org/10.1016/j.trd.2017.06.028

Fan Z, Yan J, Wei T, Zhi L, Ning G, Li T, Wei F (2011) Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv Func Mater 21(12):2366–2375. https://doi.org/10.1002/adfm.201100058

Farjana SH, Huda N, Mahmud MAP (2019a) Life cycle assessment of cobalt extraction process. Journal of Sustainable Mining 18(3):150–161. https://doi.org/10.1016/j.jsm.2019.03.002

Farjana SH, Huda N, Mahmud MAP, Lang C (2019b) A global life cycle assessment of manganese mining processes based on EcoInvent database. Sci Total Environ 688:1102–1111. https://doi.org/10.1016/j.scitotenv.2019.06.184

Fu Y, Liu F, Wang H (2020) Spindle Mn2O3/carbon hybrid with homogeneous structure as advanced electrodes for supercapacitors. J Nanoparticle Res 22(1). https://doi.org/10.1007/s11051-020-4752-6

Gajigo O, Mutambatsere E, Adjei E (2011) Manganese industry analysis: implications for project finance. June, 28. https://www.afdb.org/fileadmin/uploads/afdb/Documents/Publications/WPSNo132ManganeseIndustryAnalysisdoc.pdf. Accessed 7 July 2021

Gao L, Gu C, Zhao J, Song X, Huang J (2019) Preparation of manganese monoxide@reduced graphene oxide nanocomposites with superior electrochemical performances for lithium-ion batteries. Ceram Int 45(3):3425–3434. https://doi.org/10.1016/j.ceramint.2018.10.257

Garrett-Peltier H (2017) Green versus brown: comparing the employment impacts of energy efficiency, renewable energy, and fossil fuels using an input-output model. Econ Model 61(March):439–447. https://doi.org/10.1016/j.econmod.2016.11.012

Guo S, Lu G, Qiu S, Liu J, Wang X, He C, Wei H, Yan X, Guo Z (2014) Carbon-coated MnO microparticulate porous nanocomposites serving as anode materials with enhanced electrochemical performances. Nano Energy 9:41–49. https://doi.org/10.1016/j.nanoen.2014.06.025

Gustafsson Ö, Kruså M, Zencak Z, Sheesley RJ, Granat L, Engström E, Praveen PS, Rao PSP, Leck C, Rodhe H (2009) Brown clouds over South Asia: biomass or fossil fuel combustion? Science 323(5913):495–498. https://doi.org/10.1126/science.1164857

Han H, Sial QA, Kalanur SS, Seo H (2020) Binder assisted self-assembly of graphene oxide/Mn2O3 nanocomposite electrode on Ni foam for efficient supercapacitor application. Ceram Int 46(10):15631–15637. https://doi.org/10.1016/j.ceramint.2020.03.111

Henschel J, Horsthemke F, Stenzel YP, Evertz M, Girod S, Lürenbaum C, Kösters K, Wiemers-Meyer S, Winter M, Nowak S (2020) Lithium ion battery electrolyte degradation of field-tested electric vehicle battery cells – a comprehensive analytical study. J Power Sources 447(August 2019). https://doi.org/10.1016/j.jpowsour.2019.227370

Hoel M (1996) 96/06588 Depletion of fossil fuels and the impacts of global warming. Fuel and Energy Abstracts 37(6):460. https://doi.org/10.1016/s0140-6701(97)83963-x

Hong SH, Jang DS, Park S, Yun S, Kim Y (2020) Thermal performance of direct two-phase refrigerant cooling for lithium-ion batteries in electric vehicles. Appl Thermal Eng 173(2019):115213. https://doi.org/10.1016/j.applthermaleng.2020.115213

Höök M, Tang X (2013) Depletion of fossil fuels and anthropogenic climate change-A review. Energy Policy 52:797–809. https://doi.org/10.1016/j.enpol.2012.10.046

Hsieh CT, Lin CY, Lin JY (2011) High reversibility of Li intercalation and de-intercalation in MnO-attached graphene anodes for Li-ion batteries. Electrochim Acta 56(24):8861–8867. https://doi.org/10.1016/j.electacta.2011.07.100

Hu CC, Hung CY, Chang KH, Yang YL (2011) A hierarchical nanostructure consisting of amorphous MnO2, Mn3O4 nanocrystallites, and single-crystalline MnOOH nanowires for supercapacitors. J Power Sources 196(2):847–850. https://doi.org/10.1016/j.jpowsour.2010.08.001

Hu H, Cheng H, Liu Z, Yu Y (2015) Facile synthesis of carbon spheres with uniformly dispersed MnO nanoparticles for lithium ion battery anode. Electrochim Acta 152:44–52. https://doi.org/10.1016/j.electacta.2014.11.111

Hunter JC (1981) Preparation of a new crystal form of manganese dioxide: λ-MnO2. J Solid State Chem 39(2):142–147. https://doi.org/10.1016/0022-4596(81)90323-6

Jena KK, Alfantazi A, Mayyas AT (2021) Comprehensive review on concept and recycling evolution of lithium-ion batteries (LIBs). 10.1021/acs.energyfuels.1c02489

Jeong KH, Ha HW, Yun NJ, Hong MZ, Kim K (2005) Zr-doped Li[Ni0.5-xMn0.5-xZr2x]O 2 (x = 0, 0.025) as cathode material for lithium ion batteries. Electrochim Acta 50(27):5349–5353. https://doi.org/10.1016/j.electacta.2005.03.014

Ji L, Zhang X (2009) Manganese oxide nanoparticle-loaded porous carbon nanofibers as anode materials for high-performance lithium-ion batteries. Electrochem Commun 11(4):795–798. https://doi.org/10.1016/j.elecom.2009.01.039

Ji Y, Kpodzro EE, Jafvert CT, Zhao F (2021) Direct recycling technologies of cathode in spent lithium-ion batteries. 1(October):124–151. https://doi.org/10.3934/ctr.2021007

Jiang X, Zhu X, Liu X, Xiao L, Ai X, Yang H, Cao Y (2016) Nanospherical-like manganese monoxide/reduced graphene oxide composite synthesized by electron beam radiation as anode material for high-performance lithium-ion batteries. Electrochim Acta 196:431–439. https://doi.org/10.1016/j.electacta.2016.02.164

Kamath D, Shukla S, Arsenault R, Kim HC, Anctil A (2020) Evaluating the cost and carbon footprint of second-life electric vehicle batteries in residential and utility-level applications. Waste Manage 113:497–507. https://doi.org/10.1016/j.wasman.2020.05.034

Kandeeban R, Brindha R, Manojkumar K, Batoo KM, Raslan EH, Hadi M, Imran A, Saminathan K (2021) Revealing the synergetic electrocatalyst behaviour of Kish graphite recovered from polyethylene plastics. Mater Lett 297:129740. https://doi.org/10.1016/j.matlet.2021.129740

Kandeeban R, Saminathan K, Manojkumar K, Dilsha CG, Krishnaraj S (2019) Battery economy: past, present and future. Mater Today: Proc 48:143–147. https://doi.org/10.1016/j.matpr.2020.04.238

Kang D, Liu Q, Si R, Gu J, Zhang W, Zhang D (2016) Crosslinking-derived MnO/carbon hybrid with ultrasmall nanoparticles for increasing lithium storage capacity during cycling. Carbon 99:138–147. https://doi.org/10.1016/j.carbon.2015.11.068

Karmaker AK, Rahman MM, Hossain MA, Ahmed MR (2020) Exploration and corrective measures of greenhouse gas emission from fossil fuel power stations for Bangladesh. J Clean Prod 244:118645. https://doi.org/10.1016/j.jclepro.2019.118645

Keller A, Hlawitschka MW, Bart H (2021) Manganese recycling of spent lithium-ion batteries via solvent extraction. Sep Purif Technol 275(May):119166. https://doi.org/10.1016/j.seppur.2021.119166

Kim Y (2012) First principles investigation of the structure and stability of LiNiO 2 doped with Co and Mn. 7558–7563. https://doi.org/10.1007/s10853-012-6299-0

Kumar Nayak P, Munichandraiah N (2011) Reversible insertion of a trivalent cation onto MnO2 leading to enhanced capacitance. J Electrochem Soc 158(5):A585. https://doi.org/10.1149/1.3565177

Lander L, Kendrick E (2021) Financial viability of electric vehicle lithium-ion battery recycling vehicle lithium-ion battery recycling. ISCIENCE 24(7):102787. https://doi.org/10.1016/j.isci.2021.102787

Lang X, Hirata A, Fujita T, Chen M (2011) Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat Nanotechnol 6(4):232–236. https://doi.org/10.1038/nnano.2011.13

Lanz M, Kormann C, Steininger H, Heil G, Haas O, Novák P (2000) Large-agglomerate-size lithium manganese oxide spinel with high rate capability for lithium-ion batteries. J Electrochem Soc 147(11):3997. https://doi.org/10.1149/1.1394009

Lee HW, Muralidharan P, Ruffo R, Mari CM, Cui Y, Kim DK (2010) Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries. Nano Lett 10(10):3852–3856. https://doi.org/10.1021/nl101047f

Lee HY, Kim SW, Lee HY (2001) Expansion of active site area and improvement of kinetic reversibility in electrochemical pseudocapacitor electrode. Electrochem Solid-State Lett 4(3):19–22. https://doi.org/10.1149/1.1346536

Lee J, Hwang B, Park MS, Kim K (2016) Improved reversibility of Zn anodes for rechargeable Zn-air batteries by using alkoxide and acetate ions. Electrochim Acta 199:164–171. https://doi.org/10.1016/j.electacta.2016.03.148

Lee S, Lee JW, Eom W, Jung YW, Han TH (2020) Aqueous-processable surface modified graphite with manganese oxide for lithium-ion battery anode. Appl Surf Sci 146720. https://doi.org/10.1016/j.apsusc.2020.146720

Li CC, Yu H, Yan Q, Hng HH (2016) Nitrogen doped carbon nanotubes encapsulated MnO nanoparticles derived from metal coordination polymer towards high performance Lithium-ion Battery Anodes. Electrochim Acta 187:406–412. https://doi.org/10.1016/j.electacta.2015.11.058

Li H, Jenkins-Smith HC, Silva CL, Berrens RP, Herron KG (2009) Public support for reducing US reliance on fossil fuels: Investigating household willingness-to-pay for energy research and development. Ecol Econ 68(3):731–742. https://doi.org/10.1016/j.ecolecon.2008.06.005

Li L, Fan E, Guan Y, Zhang X, Xue Q, Wei L, Wu F, Chen R (2017) Sustainable recovery of cathode materials from spent lithium-ion batteries using lactic acid leaching system. ACS Sustain Chem Eng 5(6):5224–5233. https://doi.org/10.1021/acssuschemeng.7b00571

Li L, Lu J, Ren Y, Zhang XX, Chen RJ, Wu F, Amine K (2012) Ascorbic-acid-assisted recovery of cobalt and lithium from spent Li-ion batteries. J Power Sources 218:21–27. https://doi.org/10.1016/j.jpowsour.2012.06.068

Li S, Yan J, Pei Q, Sha J, Mou S, Xiao Y (2019) Addendum: risk identification and evaluation of the long-term supply of manganese mines in China based on the VW-BGR method [Sustainability, 11, (2019) 2683] DOI: 10.3390/su11092683. Sustainability (Switzerland) 11(24):1–23. https://doi.org/10.3390/su11247081

Li W, Zhu J, Xia Y, Gorji MB, Wierzbicki T (2019b) Data-driven safety envelope of lithium-ion batteries for electric vehicles. Joule 3(11):2703–2715. https://doi.org/10.1016/j.joule.2019.07.026

Li X, Dai K, Wang Z, Han W (2020) Lithium-ion batteries fault diagnostic for electric vehicles using sample entropy analysis method. J Energy Storage 27(September 2019):101121. https://doi.org/10.1016/j.est.2019.101121

Li X, Xiong S, Li J, Liang X, Wang J, Bai J, Qian Y (2013) MnO@Carbon core-shell nanowires as stable high-performance anodes for lithium-ion batteries. Chem Eur J 19(34):11310–11319. https://doi.org/10.1002/chem.201203553

Liu D, Song Y, Li L, Liao H, Peng Y (2018) On-line life cycle health assessment for lithium-ion battery in electric vehicles. J Clean Prod 199:1050–1065. https://doi.org/10.1016/j.jclepro.2018.06.182

Liu T, Zhang L, Cheng B, Yu J (2019a) Hollow carbon spheres and their hybrid nanomaterials in electrochemical energy storage. Adv Energy Mater 9(17):1–55. https://doi.org/10.1002/aenm.201803900

Liu Z, Ivanco A, Onori S (2019) Aging characterization and modeling of nickel-manganese-cobalt lithium-ion batteries for 48V mild hybrid electric vehicle applications. J Energy Storage 21(September 2018):519–527. https://doi.org/10.1016/j.est.2018.11.016

Ma J, Zhou YN, Gao Y, Kong Q, Wang Z, Yang XQ, Chen L (2014) Molybdenum substitution for improving the charge compensation and activity of Li2MnO3. Chem Eur J 20(28):8723–8730. https://doi.org/10.1002/chem.201402727

Maina NM, Murray J, McKenzie M (2020) Climate change and the fossil fuel divestment movement in Canadian higher education: The mobilities of actions, actors, and tactics. J Clean Prod 253:119874. https://doi.org/10.1016/j.jclepro.2019.119874

Mao Z (2016) Mathematical model and calendar aging study of commercial blended-cathode Li-ion batteries. http://hdl.handle.net/10012/10703. Accessed 1 Feb 2022

Marques P, Garcia R, Kulay L, Freire F (2019) Comparative life cycle assessment of lithium-ion batteries for electric vehicles addressing capacity fade. J Clean Prod 229:787–794. https://doi.org/10.1016/j.jclepro.2019.05.026

Martins F, Felgueiras C, Smitková M (2018) Fossil fuel energy consumption in European countries. Energy Procedia 153:107–111. https://doi.org/10.1016/j.egypro.2018.10.050

Mary AJC, Shalini SS, Balamurugan R, Harikrishnan MP, Bose AC (2020) Supercapacitor and non-enzymatic biosensor application of an Mn2O3/NiCo2O4composite material. New J Chem 44(26):11316–11323. https://doi.org/10.1039/d0nj01942a

Matsunaga T, Komatsu H, Shimoda K, Minato T, Yonemura M, Kamiyama T, Kobayashi S, Kato T, Hirayama T, Ikuhara Y, Arai H, Ukyo Y, Uchimoto Y, Ogumi Z (2016) Structural understanding of superior battery properties of partially ni-doped Li2MnO3 as cathode material. J Phys Chem Lett 7(11):2063–2067. https://doi.org/10.1021/acs.jpclett.6b00587

Mishra D, Kim DJ, Ralph DE, Ahn JG, Rhee YH (2008) Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans. Waste Manage 28(2):333–338. https://doi.org/10.1016/j.wasman.2007.01.010

Mistry M, Gediga J, Boonzaier S (2016) Life cycle assessment of nickel products. Int J Life Cycle Assess 21(11):1559–1572. https://doi.org/10.1007/s11367-016-1085-x

Mittal M, Kumar A (2014) Carbon nanotube (CNT) gas sensors for emissions from fossil fuel burning. Sens Actuators, B Chem 203:349–362. https://doi.org/10.1016/j.snb.2014.05.080

Mori D, Sakaebe H, Shikano M, Kojitani H, Tatsumi K, Inaguma Y (2011) Synthesis, phase relation and electrical and electrochemical properties of ruthenium-substituted Li2MnO3 as a novel cathode material. J Power Sources 196(16):6934–6938. https://doi.org/10.1016/j.jpowsour.2010.11.150

Mossali E, Picone N, Gentilini L, Rodrìguez O, Pérez JM, Colledani M (2020) Lithium-ion batteries towards circular economy: a literature review of opportunities and issues of recycling treatments. J Environ Manage 264. https://doi.org/10.1016/j.jenvman.2020.110500

Mullaliu A, Gaboardi M, Plaisier JR, Passerini S, Giorgetti M (2020) Lattice Compensation to Jahn-Teller distortion in Na-rich manganese hexacyanoferrate for Li-ion storage: an operando study. ACS Appl Energy Mater 3(6):5728–5733. https://doi.org/10.1021/acsaem.0c00669

Murthy, V., & Ramakrishna, S. (2022). A review on global E-waste management: urban mining towards a sustainable future and circular economy. Sustainability (Switzerland), 14(2). https://doi.org/10.3390/su14020647

Nagamuthu S, Ryu KS (2019) MOF-derived microstructural interconnected network porous Mn 2 O 3 /C as negative electrode material for asymmetric supercapacitor device. CrystEngComm 21(9):1442–1451. https://doi.org/10.1039/c8ce01683f

Nayaka GP, Pai KV, Santhosh G, Manjanna J (2016) Recovery of cobalt as cobalt oxalate from spent lithium ion batteries by using glycine as leaching agent. J Environ Chem Eng 4(2):2378–2383. https://doi.org/10.1016/j.jece.2016.04.016

Ordoñez J, Gago EJ, Girard A (2016) Processes and technologies for the recycling and recovery of spent lithium-ion batteries. Renew Sustain Energy Rev 60:195–205. https://doi.org/10.1016/j.rser.2015.12.363

Panchal S, Mathew M, Dincer I, Agelin-Chaab M, Fraser R, Fowler M (2018) Thermal and electrical performance assessments of lithium-ion battery modules for an electric vehicle under actual drive cycles. Electric Power Syst Res 163(May):18–27. https://doi.org/10.1016/j.epsr.2018.05.020

Park GT, Ryu HH, Park NY, Yoon CS, Sun YK (2019) Tungsten doping for stabilization of Li[Ni0.90Co0.05Mn0.05]O2 cathode for Li-ion battery at high voltage. Journal of Power Sources 442(September):227242. https://doi.org/10.1016/j.jpowsour.2019.227242

Petersen HA, Myren THT, O’Sullivan SJ, Luca OR (2021) Electrochemical methods for materials recycling. Materials Advances 2(4):1113–1138. https://doi.org/10.1039/d0ma00689k

Poyraz AS, Huang J, Cheng S, Bock DC, Wu L, Zhu Y, Marschilok AC, Takeuchi KJ, Takeuchi ES (2016) Effective recycling of manganese oxide cathodes for lithium based batteries. Green Chem 18(11):3414–3421. https://doi.org/10.1039/c6gc00438e

Qi J, Zhu Y, Ding R, Zhang J, Chang P, Jiao M, Wang C (2018a) Synthesis of homogeneously dispersed manganese oxide/ carbon 3D nanocomposites and their electrochemical performance in lithium-ion batteries. Ceram Int 44(12):14817–14823. https://doi.org/10.1016/j.ceramint.2018.05.113

Qi W, Lv R, Na B, Liu H, He Y, Yu N (2018b) Nanocellulose-assisted growth of manganese dioxide on thin graphite papers for high-performance supercapacitor electrodes. ACS Sustain Chem Eng 6(4):4739–4745. https://doi.org/10.1021/acssuschemeng.7b03858

Ramasubramanian, B., Reddy, M. V., Zaghib, K., Armand, M., & Ramakrishna, S. (2021). Growth mechanism of micro/nano metal dendrites and cumulative strategies for countering its impacts in metal ion batteries: A review†. Nanomaterials, 11(10). https://doi.org/10.3390/nano11102476

Reddy ALM, Shaijumon MM, Gowda SR, Ajayan PM (2009) Coaxial MnO 2/carbon nanotube array electrodes for high-performance lithium batteries. Nano Lett 9(3):1002–1006. https://doi.org/10.1021/nl803081j

Rietmann N, Hügler B, Lieven T (2020) Forecasting the trajectory of electric vehicle sales and the consequences for worldwide CO2 emissions. J Clean Prod 261:121038. https://doi.org/10.1016/j.jclepro.2020.121038

Saeki S, Lee J, Zhang Q, Saito F (2004) Co-grinding LiCoO2 with PVC and water leaching of metal chlorides formed in ground product. Int J Mineral Process 74(SUPPL.):373–378. https://doi.org/10.1016/j.minpro.2004.08.002

Schaeffer N, Passos H, Gras M, Juliana S, Vargas R, Neves MC, Svecova L, Papaiconomou N, Coutinho JAP (2020) and nickel in a fully aqueous system. https://doi.org/10.1021/acssuschemeng.0c04043

Schwanitz VJ, Piontek F, Bertram C, Luderer G (2014) Long-term climate policy implications of phasing out fossil fuel subsidies. Energy Policy 67:882–894. https://doi.org/10.1016/j.enpol.2013.12.015

Shi P, Li L, Hua L, Qian Q, Wang P, Zhou J, Sun G, Huang W (2017) Design of amorphous manganese oxide@multiwalled carbon nanotube fiber for robust solid-state supercapacitor. ACS Nano 11(1):444–452. https://doi.org/10.1021/acsnano.6b06357

Son YH, Bui PTM, Lee HR, Akhtar MS, Shah DK, Yang OB (2019) A rapid synthesis of mesoporous Mn2O3 nanoparticles for supercapacitor applications. Coatings, 9(10). https://doi.org/10.3390/coatings9100631

Song MK, Cheng S, Chen H, Qin W, Nam KW, Xu S, Yang XQ, Bongiorno A, Lee J, Bai J, Tyson TA, Cho J, Liu M (2012) Erratum: anomalous pseudocapacitive behavior of a nanostructured, mixed-valent manganese oxide film for electrical energy storage (Nano Letters (2012) 12:7 (3483-3490) (DOI: 10.1021/nl300984y). Nano Letters 12(8):4416. https://doi.org/10.1021/nl3025483

Srinivasan V (2008) Batteries for vehicular applications. AIP Conf Proc 1044:283–296. https://doi.org/10.1063/1.2993726

Statistics (2020) https://www.manganese.org/market-research/annual-reports/. Accessed 23 May 2021

Sun X, Xu Y, Ding P, Jia M, Ceder G (2013) The composite rods of MnO and multi-walled carbon nanotubes as anode materials for lithium ion batteries. J Power Sources 244:690–694. https://doi.org/10.1016/j.jpowsour.2012.11.145

Tang M, Yuan A, Xu J (2015) Synthesis of highly crystalline LiMn2O4/multiwalled carbon nanotube composite material with high performance as lithium-ion battery cathode via an improved two-step approach. Electrochim Acta 166:244–252. https://doi.org/10.1016/j.electacta.2015.03.134

Tang X, Sui G, Cai Q, Zhong W, Yang X (2016) Novel MnO/carbon composite anode material with multi-modal pore structure for high performance lithium-ion batteries. J Mater Chem A 4(6):2082–2088. https://doi.org/10.1039/c5ta10073a

Thackeray MM (1995) Structural considerations of layered and spinel lithiated oxides for lithium ion batteries. J Electrochem Soc 142(8):2558–2563. https://doi.org/10.1149/1.2050053

Thackeray MM, Shao-Horn Y, Kahaian AJ, Kepler KD, Skinner E, Vaughey JT, Hackney SA (1998) Structural fatigue in spinel electrodes in high voltage (4 V) Li/LixMn2O4 cells. Electrochem Solid-State Lett 1(1):7–9

Tian J, Wang Y, Liu C, Chen Z (2020) Consistency evaluation and cluster analysis for lithium-ion battery pack in electric vehicles. Energy 194:116944. https://doi.org/10.1016/j.energy.2020.116944

Tong W, Huang Y, Cai Y, Guo Y, Wang X, Jia D, Sun Z, Pang W, Guo Z, Zong J (2018) Synthesis of hierarchical mesoporous lithium nickel cobalt manganese oxide spheres with high rate capability for lithium-ion batteries. Appl Surf Sci 428:1036–1045. https://doi.org/10.1016/j.apsusc.2017.09.253

Toupin M, Brousse T, Bélanger D (2002) Influence of microstucture on the charge storage properties of chemically synthesized manganese dioxide. Chem Mater 14(9):3946–3952. https://doi.org/10.1021/cm020408q

Toupin M, Brousse T, Bélanger D (2004) Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem Mater 16(16):3184–3190. https://doi.org/10.1021/cm049649j

Van Gosen BS, Verplanck PL, Seal RR II, Long KR, Gambogi J (2013) Rare-earth elements, chapter O. In: Critical mineral resources of the United States — economic and environmental geology and prospects for future supply professional paper 1802. U.S. Department of the Interior U.S. Geological Survey

Van Zyl HJ, Bam WG, Steenkamp JD (2016) Identifying barriers faced by key role players in the South African manganese industry. Proceedings of the 27th SAIIE Conference, October, 365–376. https://www.saiie.co.za/saiie27. Accessed 7 July 2021

Wang B, Xia Y, Deng Z, Zhang Y, Wu H (2020a) Three-dimensional cross-linked MnO/Sb hybrid nanowires co-embedded nitrogen-doped carbon tubes as high-performance anode materials for lithium-ion batteries. J Alloy Compd 835:155239. https://doi.org/10.1016/j.jallcom.2020.155239

Wang F, Deng Y, Yuan C (2019) Comparative life cycle assessment of silicon nanowire and silicon nanotube based lithium ion batteries for electric vehicles. Procedia CIRP 80:310–315. https://doi.org/10.1016/j.procir.2019.01.004

Wang H, Cui LF, Yang Y, Sanchez Casalongue H, Robinson JT, Liang Y, Cui Y, Dai H (2010) Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J Am Chem Soc 132(40):13978–13980. https://doi.org/10.1021/ja105296a

Wang J, Feng L, Tang X, Bentley Y, Höök M (2017) The implications of fossil fuel supply constraints on climate change projections: A supply-side analysis. Futures 86(2015):58–72. https://doi.org/10.1016/j.futures.2016.04.007

Wang JG, Yang Y, Huang ZH, Kang F (2015a) MnO-carbon hybrid nanofiber composites as superior anode materials for lithium-ion batteries. Electrochim Acta 170:164–170. https://doi.org/10.1016/j.electacta.2015.04.157

Wang J, Zhang C, Kang F (2015b) Nitrogen-enriched porous carbon coating for manganese oxide nanostructures toward high-performance lithium-ion batteries. ACS Appl Mater Interf 7(17):9185–9194. https://doi.org/10.1021/acsami.5b01388

Wang K, Zhang S, Cheng Y, Yu X, Tu B, Tao H (2020b) Synthesis and electrochemical properties of coaxial-cable nanostructure carbon wrapped manganese oxide as anode for lithium ion batteries. Polyhedron 181:114436. https://doi.org/10.1016/j.poly.2020.114436

Wang YT, Lu AH, Zhang HL, Li WC (2011) Synthesis of Nanostructured mesoporous manganese oxides with three-dimensional frameworks and their application in supercapacitors. J Phys Chem C 115(13):5413–5421. https://doi.org/10.1021/jp110938x

Wei W, Cui X, Chen W, Ivey DG (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40(3):1697–1721. https://doi.org/10.1039/c0cs00127a

Westfall LA, Davourie J, Ali M, McGough D (2016) Cradle-to-gate life cycle assessment of global manganese alloy production. Int J Life Cycle Assess 21(11):1573–1579. https://doi.org/10.1007/s11367-015-0995-3

Wu ZS, Ren W, Wang DW, Li F, Liu B, Cheng HM (2010) High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 4(10):5835–5842. https://doi.org/10.1021/nn101754k

Xia H, Feng J, Wang H, Lai MO, Lu L (2010a) MnO2 nanotube and nanowire arrays by electrochemical deposition for supercapacitors. J Power Sources 195(13):4410–4413. https://doi.org/10.1016/j.jpowsour.2010.01.075

Xia H, Lai M, Lu L (2010b) Nanoflaky MnO2/carbon nanotube nanocomposites as anode materials for lithium-ion batteries. J Mater Chem 20(33):6896–6902. https://doi.org/10.1039/c0jm00759e

Xia P, Lin HB, Tu WQ, Chen XQ, Cai X, Zheng XW, Xu MQ, Li WS (2016) A novel fabrication for manganese monoxide/reduced graphene oxide nanocomposite as high performance anode of lithium ion battery. Electrochim Acta 198:66–76. https://doi.org/10.1016/j.electacta.2016.03.077

Xia Q, Wang Z, Ren Y, Sun B, Yang D, Feng Q (2018) A reliability design method for a lithium-ion battery pack considering the thermal disequilibrium in electric vehicles. J Power Sources 386(February):10–20. https://doi.org/10.1016/j.jpowsour.2018.03.036

Xiang Y, Wu X (2018) Enhanced electrochemical performances of Li2MnO3 cathode materials by Al doping. Ionics 24(1):83–89. https://doi.org/10.1007/s11581-017-2189-4

Xiao H, Sun H, Yang T, Zhang W, Ru S, Ai Z, Feng C, Wang C, Liu J (2019) Dandelion-like manganese multiple-oxides with simple fiber carbon as anode for high performance lithium ion batteries. Electrochim Acta 326:134988. https://doi.org/10.1016/j.electacta.2019.134988

Xiong S, Ji J, Ma X (2020) Environmental and economic evaluation of remanufacturing lithium-ion batteries from electric vehicles. Waste Manage 102:579–586. https://doi.org/10.1016/j.wasman.2019.11.013

Xu H, Sun Z, Chen J (2020) Graphene-based anode materials for lithium-ion batteries. In Emerging 2D Materials and Devices for the Internet of Things. INC. https://doi.org/10.1016/b978-0-12-818386-1.00006-0

Yan C, Zheng M, Shen G, Cheng Y, Ma S, Sun J, Cui M, Zhang F, Han Y, Chen Y (2019) Characterization of carbon fractions in carbonaceous aerosols from typical fossil fuel combustion sources. Fuel 254(March):115620. https://doi.org/10.1016/j.fuel.2019.115620

Yang L, Cai Y, Yang Y, Deng Z (2020) Supervisory long-term prediction of state of available power for lithium-ion batteries in electric vehicles. Appl Energy 257(August 2019):114006. https://doi.org/10.1016/j.apenergy.2019.114006

Yao L, Feng Y, Xi G (2015) A new method for the synthesis of LiNi1/3Co1/3Mn1/3O2 from waste lithium ion batteries. RSC Adv 5(55):44107–44114. https://doi.org/10.1039/c4ra16390g

Yoon S, Fairley D, Barrett TE, Sheesley RJ (2018) Biomass and fossil fuel combustion contributions to elemental carbon across the San Francisco Bay Area. Atmos Environ 195:229–242. https://doi.org/10.1016/j.atmosenv.2018.09.050

Yu G, Hu L, Liu N, Wang H, Vosgueritchian M, Yang Y, Cui Y, Bao Z (2011) Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Lett 11(10):4438–4442. https://doi.org/10.1021/nl2026635

Yu J, He Y, Zou S, Na B, Liu H, Liu J, Li H (2020) Redox-active manganese dioxide@polypropylene hybrid separators for advanced lithium ion batteries. Appl Surf Sci 508(November):144757. https://doi.org/10.1016/j.apsusc.2019.144757

Zhang J, Jiang J, Zhao XS (2011) Synthesis and capacitive properties of manganese oxide nanosheets dispersed on functionalized graphene sheets. J Phys Chem C 115(14):6448–6454. https://doi.org/10.1021/jp200724h

Zhang N, Guo G, He B, Zhu J, Wu J, Qiu J (2020a) Synthesis and research of MnO2–NiO composite as lithium-ion battery anode using spent Zn–Mn batteries as manganese source. J Alloy Compd 155578. https://doi.org/10.1016/j.jallcom.2020.155578

Zhang Q, Cui N, Li Y, Duan B, Zhang C (2020b) Fractional calculus based modeling of open circuit voltage of lithium-ion batteries for electric vehicles. J Energy Storage, 27(September 2019). https://doi.org/10.1016/j.est.2019.100945

Zhang YJ, Xia SB, Zhang YN, Dong P, Yan YX, Yang RM (2012) Ce-doped LiNi1/3Co(1/3-x/3)Mn1/3Cex/3O2 cathode materials for use in lithium ion batteries. Chin Sci Bull 57(32):4181–4187. https://doi.org/10.1007/s11434-012-5417-3

Zhang Z, Zeng Y, Zheng N, Luo L, Xiao H, Xiao H (2020c) Fossil fuel-related emissions were the major source of NH3 pollution in urban cities of northern China in the autumn of 2017. Environ Pollut 256:113428. https://doi.org/10.1016/j.envpol.2019.113428

Zhao S, Wen L, Liu J, Chen J, Bei F (2020) Mn-doped LiFePO4/C composite with excellent high-rate performance as lithium ion batteries cathode. Int J Electrochem Sci 15(9):8873–8882. https://doi.org/10.20964/2020.09.18

Zhao W, Xiong L, Xu Y, Xiao X, Wang J, Ren Z (2016) Magnesium substitution to improve the electrochemical performance of layered Li2MnO3 positive-electrode material. J Power Sources 330:37–44. https://doi.org/10.1016/j.jpowsour.2016.08.135

Zhu C, Han C, Gong, Saito G, Akiyama T (2016) Facile synthesis of MnO/carbon composites by a single-step nitrate-cellulose combustion synthesis for Li ion battery anode. J Alloys Compounds 689:931–937. https://doi.org/10.1016/j.jallcom.2016.08.054

Zhu C, Sheng N, Akiyama T (2015a) MnO nanoparticles embedded in a carbon matrix for a high performance Li ion battery anode. RSC Adv 5(27):21066–21073. https://doi.org/10.1039/c5ra02649k

Zhu W, Huang H, Zhang W, Tao X, Gan Y, Xia Y, Yang H, Guo X (2015b) Synthesis of MnO/C composites derived from pollen template for advanced lithium-ion batteries. Electrochim Acta 152:286–293. https://doi.org/10.1016/j.electacta.2014.11.092