Examination of boldness traits in sexual and asexual mollies (Poecilia latipinna, P. formosa)

Springer Science and Business Media LLC - Tập 14 - Trang 77-83 - 2011
Kristin Scharnweber1, Martin Plath2, Michael Tobler3,4
1Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology & Inland Fisheries, Berlin, Germany
2Department of Ecology and Evolution, Institute of Ecology, Evolution and Diversity, J.W. Goethe University Frankfurt, Frankfurt am Main, Germany
3Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, USA
4Department of Zoology, Oklahoma State University, Stillwater, USA

Tóm tắt

Considering the high costs of sexual reproduction (e.g., the production of males), its maintenance and predominance throughout the Animal Kingdom remain elusive. Especially the mechanisms allowing for a stable coexistence of closely related sexual and asexual species are still subject to a lively debate. Asexuals should rapidly outnumber sexuals due to higher population growth rates, unless they face some disadvantages. Here, we investigate potential differences in feeding behavior in a system of sexual (sailfin mollies, Poecilia latipinna) and coexisting gynogenetic fishes (Amazon mollies, Poecilia formosa). In two different experiments, we tested for differences in behavioral traits associated with boldness. Bold individuals take higher risks for gains in resources, so shyer individuals should be less competitive. Our study was motivated by the recent finding that P. formosa are less likely to be preyed upon by piscine predators than P. latipinna. We asked whether this result is indicative of low boldness in P. formosa. However, no differences between the two species were detectible in our behavioral experiments measuring (a) time to emerge from shelter to explore a novel environment, (b) latency time until feeding in a novel environment, and (c) recovery time until feeding restarted after a simulated predator attack. Furthermore, different boldness measures were not correlated with each other within individuals.

Tài liệu tham khảo

Agrawal AF (2001) Sexual selection and the maintenance of sexual reproduction. Nature 411:692–695 Alberici da Barbiano L, Waller J, Gabor CR (2010) Differences in competitive efficiency between a sexual parasite and its host may explain the maintenance of a sperm-dependent vertebrate species. J Freshw Ecol 4:523–530 Aspbury AS, Gabor CR (2004) Discriminating males alter sperm production between species. Proc Natl Acad Sci 101:15970–15973 Barton NH, Charlesworth B (1998) Why sex and recombination? Science 281:1986–1990 Bell G (1982) The masterpiece of nature, the evolution and genetics of sexuality. University of California, Berkeley Brown C, Braithwaite VA (2004) Size matters: a test of boldness in eight populations of the poeciliid Brachyraphis episcopi. Anim Behav 68:1325–1329 Brown C, Jones F, Braithwaite V (2005) In situ examination of boldness–shyness traits in the tropical poeciliid, Brachyraphis episcopi. Anim Behav 70:1003–1009 Brown C, Burgess F, Braithwaite VA (2007a) Heritable and experiential effects on boldness in a tropical poeciliid. Behav Ecol Sociobiol 62:237–243 Brown C, Jones F, Braithwaite VA (2007b) Correlation between boldness and body mass in natural populations of the poeciliid Brachyrhaphis episcopi. J Fish Biol 71:1590–1601 Case TJ, Taper ML (1986) On the coexistence and coevolution of asexual and sexual competitors. Evolution 40:366–387 Chapman BB, Morrell LJ, Krause J (2010) Unpredictability in food supply during early life influences boldness in fish. Behav Ecol 21:501–509 Dawley RM (1989) An introduction to unisexual vertebrates. In: Dawley RM, Bogart JP (eds) Evolution and ecology of unisexual vertebrates. Bulletin 466. New York State Museum, New York, pp 1–18 Dingemanse NJ, Van der Plas F, Wright J, Reale D, Schrama M, Roff DA, Van der Zee E, Barber I (2009) Individual experience and evolutionary history of predation affect expression of heritable variation in fish personality and morphology. Proc R Soc Lond B 276:1285–1293 Fischer C, Schlupp I (2008) Predation as a potential mechanism allowing asexual mollies to invade sexual mollies. Proc Okl Acad Sci 88:1–8 Foran MC, Ryan MJ (1994) Female–female competition in a unisexual/bisexual complex of mollies. Copeia 1994:504–508 Gabor CR, Ryan MJ (2001) Geographical variation in reproductive character displacement in mate choice by male sailfin mollies? Proc R Soc Lond B Biol Sci 268:1063–1070 Godin JGJ, Dugatkin LA (1996) Female mating preference for bold males in the guppy, Poecilia reticulata. Proc Natl Acad Sci USA 93:10262–10267 Gumm JM, Gabor CR (2005) Asexuals looking for sex: conflict between species and mate-quality recognition in sailfin mollies (Poecilia latipinna). Behav Ecol Sociobiol 58:558–565 Harcourt JL, Sweetman G, Johnstone RA, Manica A (2009) Personality counts: the effect of boldness on shoal choice in three-spined sticklebacks. Anim Behav 77:1501–1505 Hubbs CL, Hubbs LC (1932) Apparent parthenogenesis in nature in a form of fish of hybrid origin. Science 76:628–630 Kondrashov AS (1988) Deleterious mutations and the evolution of sexual reproduction. Nature 336:435–441 Ladle RJ (1992) Parasites and sex: catching the Red Queen. Trends Ecol Evol 7:405–408 Lively C, Lloyd D (1990) The cost of biparental sex under individual selection. Am Nat 135:489–500 Loewe L, Lamatsch DK (2008) Quantifying the threat of extinction from Muller’s ratchet in the diploid Amazon molly (Poecilia formosa). BMC Evol Biol 8:88 Magnhagen C (2007) Social influence on the correlation between behaviours in young-of-the-year perch. Behav Ecol Sociobiol 61:525–531 Maynard Smith J (1978) The evolution of sex. Cambridge University Press, Cambridge Piyapong C, Krause J, Chapman BB, Ramnarine IW, Louca V, Croft DP (2009) Sex matters: a social context to boldness in guppies (Poecilia reticulata). Behav Ecol 21:3–8 Rasch EM, Monaco PJ, Balsano JS (1982) Cytophotometric and autoradiographic evidence for functional apomixis in a gynogenetic fish, Poecilia formosa and its related, triploid unisexuals. Histochem 73:515–533 Reale D, Reader SM, Sol D, McDougall PT, Dingemanse NJ (2007) Integrating animal temperament within ecology and evolution. Biol Rev 82:291–318 Redfield RJ (1994) Male mutation rates and the cost of sex for females. Nature 369:145–147 Riesch R, Duwe V, Herrmann N, Padur L, Ramm A, Scharnweber K, Schulte M, Schulz-Mirbach T, Ziege M, Plath M (2009) Variation along the shy–bold continuum in extremophile fishes (Poecilia mexicana, Poecilia sulphuraria). Behav Ecol Sociobiol 63:1515–1526 Riesch R, Schlupp I, Plath M (2008) Female sperm limitation in natural populations of a sexual/asexual mating complex (Poecilia latipinna, Poecilia formosa). Biol Lett 4:266–269 Robinson DM, Aspbury AS, Gabor CR (2008) Differential sperm expenditure by male sailfin mollies, Poecilia latipinna, in a unisexual–bisexual species complex and the influence of spermiation during mating. Behav Ecol Sociobiol 62:705–711 Scharnweber K, Plath M, Tobler M (2011) Feeding efficiency and food competition in coexisting sexual and asexual livebearing fishes of the genus Poecilia. Environ Biol Fish 90:197–205 Schartl M, Wilde B, Schlupp I, Parzefall J (1995) Evolutionary origin of a parthenoform, the Amazon molly Poecilia formosa, on the basis of a molecular genealogy. Evolution 49:827–835 Schlupp I (2005) The evolutionary ecology of gynogenesis. Ann Rev Ecol Evol Syst 36:399–417 Schlupp I, Plath M (2005) Male mate choice and sperm allocation in a sexual/asexual mating complex of Poecilia (Poeciliidae, Teleostei). Biol Lett 1:169–171 Schlupp I, Ryan MJ (1996) Mixed-species shoals and the maintenance of a sexual–asexual mating system in mollies. Anim Behav 52:885–890 Schlupp I, Nanda I, Döbler M, Lamatsch DK, Epplen JT, Parzefall J, Schmid M, Schartl A (1998) Dispendable and indispendable genes in an ameiotic fish, the Amazon molly Poecilia formosa. Cytogen Cell Gen 80:193–198 Sih A, Bell AM (2008) Insights for behavioral ecology from behavioral syndromes. In: Brockmann HJ, Roper T, Naguib M, Wynne-Edwards K, Barnard C, Mitani J (eds) Advances in the study of behavior, vol 38. Elsevier Academic, San Diego, pp 227–281 Sih A, Bell A, Johnson JC (2004a) Behavioral syndromes: an ecological and evolutionary overview. Trends Ecol Evol 19:372–378 Sih A, Bell AM, Johnson JC, Ziemba RE (2004b) Behavioral syndromes: an integrative overview. Quart Rev Biol 79:241–277 Stöck M, Lampert KP, Moller D, Schlupp I, Schartl M (2010) Monophyletic origin of multiple clonal lineages in an asexual fish (Poecilia formosa). Mol Ecol 19:5204–5215 Tiedemann R, Moll K, Paulus KB, Schlupp I (2005) New microsatellite loci confirm hybrid origin, parthenogenetic inheritance, and mitotic gene conversion in the gynogenetic Amazon molly (Poecilia formosa). Mol Ecol Notes 5:586–589 Tiira K, Laurila A, Peuhkuri N, Piironen J, Ranta E, Primmer CR (2003) Aggressiveness is associated with genetic diversity in landlocked salmon (Salmo salar). Mol Ecol 12:2399–2407 Tiira K, Laurila A, Enberg K, Piironen J, Aikio S, Ranta E, Primmer CR (2006) Do dominants have higher heterozygosity? Social status and genetic variation in brown trout, Salmo trutta. Behav Ecol Sociobiol 59:657–665 Tobler M, Schlupp I (2005) Parasites in sexual and asexual mollies (Poecilia, Poeciliidae, Teleostei): a case for the Red Queen? Biol Lett 1:166–168 Tobler M, Schlupp I (2008) Expanding the horizon: the Red Queen and potential alternatives. Can J Zool 86:765–773 Tobler M, Schlupp I (2010) Differential susceptibility to food stress in neonates of sexual and asexual mollies (Poecilia, Poeciliidae). Evol Ecol 24:39–47 Turner BJ (1982) The evolutionary genetics of a unisexual fish, Poecilia formosa. In: Barigozzi C (ed) Mechanisms of speciation. Alan R. Liss, New York, pp 265–305 Vainikka A, Rantala MJ, Niemelä HH, Kortet R (2011) Boldness as a consistent personality trait in the noble crayfish, Astacus astacus. Acta Ethol 14:17–25 Ward AJW, Thomas P, Hart PJB, Krause J (2004) Correlates of boldness in three-spined sticklebacks (Gasterosteus aculeatus). Behav Ecol Sociobiol 55:561–568 Webster MM, Ward AJW, Hart PJB (2009) Individual boldness affects interspecific interactions in sticklebacks. Behav Ecol Sociobiol 63:511–520 West SA, Lively CM, Read AF (1999) A pluralist approach to sex and recombination. J Evol Biol 12:1003–1012 Wilson ADM, Godin JGJ (2009) Boldness and behavioral syndromes in the bluegill sunfish, Lepomis macrochirus. Behav Ecol 20:231–237 Wilson ADM, Godin JGJ, Ward AJW (2009) Boldness and reproductive fitness correlates in the eastern mosquitofish, Gambusia holbrooki. Ethology 116:96–104 Wilson DS, Clark AB, Coleman K, Dearstyne T (1994) Shyness and boldnes in humans and other animals. Trends Ecol Evol 9:442–446