Exact variation and drift parameter estimation for the nonlinear fractional stochastic heat equation

Julie Gamain1, Ciprian A. Tudor1
1Laboratoire Paul Painlevé UMR 8524, CNRS, Université de Lille, 59655, Villeneuve d’Ascq, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Altmeyer, R., Cialenco, I., & Pasemann, G. (2020). Parameter estimation for semilinear SPDEs from local measurements. Preprint. arXiv:2004.14728.

Assaad, O., & Tudor, C. A. (2021). Pathwise analysis and parameter estimation for the stochastic Burgers equation. Bulletin des Sciences Mathematiques,170(2021), Paper No. 102995, 26 pp.

Assaad, O., Nualart, D., Tudor, C.A., & Viitasaari, L. (2022). Quantitative normal approximations for the stochastic fractional heat equation. Stochastics and Partial Differential Equations: Analysis and Computations,10(2021), no. 1, 223-254.

Bibinger, M. & Trabs, M. (2019). On central limit theorems for power variations of the solution to the stochastic heat equation. Stochastic models, statistics and their applications, 69-84, Springer Proc. Math. Stat., 294, Springer, Cham.

Bibinger, M., & Trabs, M. (2020). Volatility estimation for stochastic PDEs using high-frequency observations. Stochastic Processes and Their Applications, 130(5), 3005–3052.

Chong, C. (2019). High-frequency analysis of parabolic stochastic PDEs with multiplicative noise: Part I. arXiv preprint arXiv:1908.04145.

Chong, C. (2020). High-frequency analysis of parabolic stochastic PDEs. Annals of Statistics, 48, 1143–1167.

Chong, C., & Dalang, R. (2022). Power variations in fractional Sobolev spaces for a class of parabolic stochastic PDEs. Preprint. arXiv:2006.15817.

Cialenco, I. (2018). Statistical inference for spdes: an overview. Statistical Inference for Stochastic Processes, 21(2), 309–329.

Cialenco, I., & Huang, Y. (2020). A note on parameter estimation for discretely sampled spdes. Stochastics and Dynamics,20(3), 2050016, 28 pp.

Cialenco, I., Delgado-Vences, F., & Kim, H.-J. (2020). Drift estimation for discretely sampled SPDEs. Stochastics and Partial Differential Equations: Analysis and Computation, 8(2020), 895–920.

Cialenco, I., Kim, H.-J., & Pasemann, G. (2021). Statistical analysis of discretely sampled semilinear SPDEs: a power variation approach. arxiv preprint arxiv:2103.04211.

Cialenco, I., & Kim, H.-J. (2022). Parameter estimation for discretely sampled stochastic heat equation driven by space-only noise. Stochastic Processes and Their Applications, 143, 1–30.

Dalang, R. (1999). Extending the martingale measure stochastic integral with applications to spatially homogeneous S.P.D.E.’s. Electronic Journal of Probability,4, paper no. 6, 29.

Debbi, L., & Dozzi, M. (2005). On the solutions of nonlinear stochastic fractional partial differential equations in one spatial dimension. Stochastic Processes and Their Applications, 115, 1761–1781.

Foodun, M., Khoshnevisan, D., & Mahboubi, P. (2015). Analysis of the gradient of the solution to a stochastic heat equation via fractional Brownian motion Stoch. Stochastic Partial Differential Equations: Analysis and Computations, 3(2), 133–158.

Gaudlitz, S., & Reiss, M. (2022). Estimation for the reaction term in semi-linear SPDEs under small diffusivity. arXiv preprint arXiv:2203.10527.

Hildebrandt, F., & Trabs, M. (2021). Parameter estimation for SPDEs based on discrete observations in time and space. Electronic Journal of Statistics, 15(1), 2716–2776.

Jacob, N., & Leopold, H. G. (1993). Pseudo differential operators with variable order of differentiation generating Feller semigroups. Integral Equations Operator Theory, 17, 544–553.

Jacob, N., Potrykus, A., & Wu, J.-L. (2010). Solving a non-linear stochastic pseudo-differential equation of Burgers type. Stochastic Processes and their Applications, 120, 2447–2467.

Kaino, Y., & Uchida, M. (2021). Parametric estimation for a parabolic linear SPDE model based on sampled data. Journal of Statistical Planning and Inference, 211, 190–220.

Khalil-Mahdi, Z., & Tudor, C. A. (2019). On the distribution and $$q$$-variation of the solution to the heat equation with Fractional Laplacian. Probability Theory and Mathematical Statistics, 39(2), 315–335.

Khalil-Mahdi, Z., & Tudor, C. A. (2019). Estimation of the drift parameter for the fractional stochastic heat equation via power variation. Modern Stochastics: Theory and Applications, 6(4), 397–417.

Pospisil, J., & Tribe, R. (2007). Parameter estimates and exact variations for stochastic heat equation heat equations driven by space-time white noise. Stochastic Analysis and Applications, 25(3), 593–611.

Tudor, C. A. (2022). Stochastic partial differential equations with additive gaussian noise: Analysis and inference. World Scientific.

Tudor, C. A., & Xiao, Y. (2017). Sample paths of the solution to the fractional-colored stochastic heat equation. Stochastics and Dynamics,17(1), 1750004, 20.

Walsh, J. W. (1986). An introduction to stochastic partial differential equations. École d’ été de probabilités de Saint-Flour, XIV-1984, 265-439, LNM 1180, Springer.

Zili, M., & Zougar, E. (2019). Exact variations for stochastic heat equations with piecewise constant coefficients and applications to parameter estimation. Teor. Imovīr. Mat. Stat. No., 100(2019), 75–101.