Exact traveling wave solutions of nonlinear variable-coefficients evolution equations with forced terms using the generalized ( G′/G)-expansion method
Tóm tắt
Từ khóa
Tài liệu tham khảo
M. J. Ablowitz and P. A. Clarkson, Soliton, Nonlinear Evolution Equations and Inverse Scattering, Cambridge Univ. Press, New York (1991).
R. Hirota, “Exact solution of the Korteweg–de Vries equation for multiple collisions of solitons,” Phys. Rev. Lett., 27, 1192–1194 (1971).
M. R. Miurs, Bäcklund Transformation, Springer, Berlin (1978).
J. Weiss, M. Tabor, and G. Carnevale, “The Painlevé property for partial differential equations,” J. Math. Phys., 24, 522–526 (1983).
M. L. Wang, “Exact solution for a compound KdV–Burgers equations,” Phys. Lett. A, 213, 279–287 (1996).
M. El-Shahed, “Application of He’s homotopy perturbation method to Volterra’s integro-differential equation,” Int. J. Nonlin. Sci. Numer. Simul., 6, 163–168 (2005).
J. H. He, “Homotopy perturbation method for bifurcation of nonlinear problems,” Int. J. Nonlin. Sci. Numer. Simul., 6, 207–208 (2005).
J. H. He, “Application of homotopy perturbation method to nonlinear wave equations,” Chaos, Solitons and Fractals, 26, 695–700 (2005).
J. H. He, “Variational iteration method—a kind of nonlinear analytical technique: some examples,” Int. J. Nonlin. Mech., 34, 699–708 (1999).
J. H. He, “Variational iteration method for autonomous ordinary differential systems,” Appl. Math. Comput., 114, 115–123 (2000).
J. H. He, “Variational principles for some nonlinear partial differential equations with variable coefficients,” Chaos, Solitons and Fractals, 19, 847–851 (2004).
J. H. He, “Variational approach to (2+1)-dimensional dispersive long water equations,” Phys. Lett. A, 335, 182–184 (2005).
T. A. Abassy, M. A. El-Tawil, and H. K. Saleh, “The solution of KdV and mKdV equations using Adomian Padé approximation,” Int. J. Nonlin. Sci. Numer. Simul., 5, 327–340 (2004).
E. M. E. Zayed, H. A. Zedan, and K. A. Gepreel, “Group analysis and modified extended Tanh-function to find the invariant solutions and soliton solutions for nonlinear Euler equations,” Int. J. Nonlin. Sci. Numer. Simul., 5, 221–234 (2004).
H. A. Abdusalam, “On an improved complex Tanh-function method,” Int. J. Nonlin. Sci. Numer. Simul., 6, 99–106 (2005).
J. Q. Hu, “An algebraic method exactly solving two high dimensional nonlinear evolution equations,” Chaos, Solitons and Fractals, 23, 391–398 (2005).
Y. Chen, Q. Wang, and B. Li, “A series of soliton-like and double-like periodic solutions of a (2 + 1)-dimensional asymmetric Nizhnik–Novikov–Vesselov equation,” Commun. Theor. Phys., 42, 655–660 (2004).
S. K. Liu, Z. T. Fu, S. D. Liu, and Q. Zhao, “Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations,” Phys. Lett. A, 289, 69–74 (2001).
Z. T. Fu, S. K. Liu, S. D. Liu, and Q. Zhao, “New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations,” Phys. Lett. A, 290, 72–76 (2001).
J. B. Liu and K. Q. Yang, “The extended F -expansion method and exact solutions of nonlinear PDEs,” Chaos, Solitons and Fractals, 22, 111–121 (2004).
S. Zhang, “New exact solutions of the KdV–Burgers–Kuramoto equation,” Phys. Lett. A, 358, 414–420 (2006).
S. Zhang and T. C. Xia, “A generalized new auxiliary equation method and its applications to nonlinear partial differential equations,” Phys. Lett. A, 363, 356–360 (2007).
S. Zhang and T. C. Xia, “A generalized auxiliary equation method and its application to (2+1)-dimensional asymmetric Nizhnik–Novikov–Vesselov equations,” J. Phys. A: Math. Theor., 40, 227–248 (2007).
J. H. He and X. H. Wu, “Exp-function method for nonlinear wave equations,” Chaos, Solitons and Fractals, 30, 700–708 (2006).
J. H. He and M. A. Abdou, “New periodic solutions for nonlinear evolution equations using Exp-function method,” Chaos, Solitons and Fractals, 34, 1421–1429 (2007).
E. M. E. Zayed and K. A. Gepreel, “The (G′ G ) -expansion method for finding travelling wave solutions of nonlinear PDEs in mathematical physics,” J. Math. Phys., 50, 013502–013513 (2009).
E. M. E. Zayed and K. A. Gepreel, “Some applications of the (G′ G ) -expansion method to nonlinear partial differential equations,” Appl. Math. Comput., 212, 1–13 (2009).
E. M. E. Zayed and K. A. Gepreel, “Three types of traveling wave solutions of nonlinear evolution equations using the (G′ G ) - expansion method,” Int. J. Nonlin. Sci., 7, 501–512 (2009).
E. M. E. Zayed and S. Al-Joudi, “Applications of an improved (G′ G ) -expansion method to nonlinear PDEs in mathematical physics,” AIP Conf. Proc. Amer. Inst. Phys., 1168, 371–376 (2009).
M. L. Wang, X. Z. Li, and J. L. Zhang, “The (G′ G ) -expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics,” Phys. Lett. A, 372, 417–423 (2008).
H. Zedan, “New classes of solutions for a system of partial differential equations by (G′ G ) -expansion method,” Nonlin. Sci. Lett. A, 1, No. 3, 219–238 (2010).
J. Zhang, X. Wei, and Y. Lu, “A generalized (G′ G ) -expansion method and its applications,” Phys. Lett. A, 372, 3653–3658 (2008).
S. Zhang, J. L. Tong, and W. Wang, “A generalized (G′ G ) -expansion method for the mKdV equation with variable coefficients,” Phys. Lett. A, 372, 2254–2257 (2008).
S. Zhang, W. Wang, and J. L. Tong, “A generalized (G′ G ) -expansion method and its application to the (2 + 1)-dimensional Broer–Kaup equations,” Appl. Math. Comput., 209, 399–404 (2009).
M. Song and Y. Ge, “Application of the (G′ G ) -expansion method to (3+1)-dimensional nonlinear evolution equations,” Comput. Math. Appl., 60, 1220–1227 (2010).
E. M. E. Zayed and M. A. M. Abdelaziz, “Exact solutions for nonlinear PDEs with variable coefficients using the generalized (G′ G ) -expansion method and the Exp-function method,” Int. Rev. Phys., 4, 161–171 (2010).
E. M. E. Zayed and M. A. M. Abdelaziz, “Traveling wave solutions for the Burgers equation and the KdV equation with variable coefficients using the generalized (G′ G ) -expansion method,” Z. Naturforsch., 65a, 1065–1070 (2010).
E. M. E. Zayed and M. A. M. Abdelaziz, “Exact solutions for the generalized Zakharov–Kuznetsov equation with variable coefficients using the generalized (G′ G ) -expansion method,” AIP Conf. Proc. Amer. Inst. Phys., 1281, 2216–2219 (2010).
E. M. E. Zayed and S. Al-Joudi, “An improved (G′ G ) -expansion method for solving nonlinear PDEs in mathematical physics,” AIP Conf. Proc. Amer. Institute of Phys., 1281, 2220–2224 (2010).
E. M. E. Zayed, “Equivalence of the (G′ G ) -expansion method and the tanh-coth function method,” AIP Conf. Proc. Amer. Inst. Phys., 1281, 2225–2228 (2010).
H. Zhang and D. Lu, “Exact solutions of the variable coefficient Burgers–Fisher equation with forced term,” Int. J. Nonlin. Sci., 9, 252–256 (2010).