Exact solutions and conservation laws of Zakharov–Kuznetsov modified equal width equation with power law nonlinearity
Tóm tắt
Từ khóa
Tài liệu tham khảo
Biswas, 2009, 1-soliton solution of the generalized Zakharov–Kuznetsov modified equal width equation, Appl. Math. Lett., 22, 1775, 10.1016/j.aml.2009.06.015
Biswas, 2009, Topological and non-topological solitons for the generalized Zakharov–Kuznetsov modified equal width equation, Int. J. Theor. Phys., 48, 2698, 10.1007/s10773-009-0060-8
Biswas, 2010, Solitary wave solution of the Zakharov–Kuznetsov equation in plasmas with power law nonlinearity, Nonlinear Anal. Real World Appl., 11, 3272, 10.1016/j.nonrwa.2009.08.007
Xu, 2009, Evaluation of two-dimensional ZK-MEW equation using the Exp-function method, Comput. Math. Appl., 58, 2307, 10.1016/j.camwa.2009.03.021
Wazwaz, 2008, The extended tanh method for the Zakharov–Kuznetsov (ZK) equation, the modified ZK equation, and its generalized forms, Commun. Nonlinear Sci. Numer. Simul., 13, 1039, 10.1016/j.cnsns.2006.10.007
Wazwaz, 2005, A class of nonlinear fourth order variant of a generalized Camassa–Holm equation with compact and noncompact solutions, Appl. Math. Comput., 165, 485, 10.1016/j.amc.2004.04.029
Bluman, 1989, Symmetries and Differential Equations, vol. 81
Olver, 1993, Applications of Lie Groups to Differential Equations, vol. 107
Ovsiannikov, 1982
Kudryashov, 2005, Simplest equation method to look for exact solutions of nonlinear differential equations, Chaos Solitons Fractals, 24, 1217, 10.1016/j.chaos.2004.09.109
Kudryashov, 2005, Exact solitary waves of the Fisher equation, Phys. Lett. A, 342, 99, 10.1016/j.physleta.2005.05.025
Ibragimov, 2007, A new conservation theorem, J. Math. Anal. Appl., 333, 311, 10.1016/j.jmaa.2006.10.078
Anco, 2002, Direct construction method for conservation laws of partial differential equations, part I: examples of conservation law classifications, European J. Appl. Math., 13, 545, 10.1017/S095679250100465X
Hereman, 2006, Symbolic computation of conservation laws of nonlinear partial differential equations in multi-dimensions, Int. J. Quant. Chem., 106, 278, 10.1002/qua.20727
Vitanov, 2010, Application of simplest equations of Bernoulli and Riccati kind for obtaining exact traveling-wave solutions for a class of PDEs with polynomial nonlinearity, Commun. Nonlinear Sci. Numer. Simul., 15, 2050, 10.1016/j.cnsns.2009.08.011
Vitanov, 2010, Application of the method of simplest equation for obtaining exact traveling-wave solutions for two classes of model PDEs from ecology and population dynamics, Commun. Nonlinear Sci. Numer. Simul., 15, 2836, 10.1016/j.cnsns.2009.11.029
Ibragimov, 1994, vol. 1–3
Atherton, 1975, On the existence and formulation of variational principles for nonlinear differential equations, Studies Appl. Math., 54, 31, 10.1002/sapm197554131
Anthonyrajah, 2010, Conservation laws and invariant solutions in the Fanno model for turbulent compressible flow, Math. Comput. Appl., 15, 529