Exact semiclassical expansions for one-dimensional quantum oscillators
Tóm tắt
Từ khóa
Tài liệu tham khảo
1970, Distribution of eigenfrequencies for the wave equation in a finite domain, Ann. Phys. (N. Y.), 60, 401, 10.1016/0003-4916(70)90497-5
1971, Asymptotic evaluation of the Green’s function for large Quantum numbers, Ann. Phys. (N. Y.), 63, 592, 10.1016/0003-4916(71)90032-7
1974, Solution of the Schrödinger equation in terms of classical paths, Ann. Phys. (N. Y.), 85, 514, 10.1016/0003-4916(74)90421-7
1983, The return of the quartic oscillator: The complex WKB method, Ann. Inst. H. Poincaré Phys. Theor., 39, 211
1990, Développements semi-classiques exacts des niveaux d’énergie d’un oscillateur á une dimension, C. R. Acad. Sci. Paris Ser. I, 310, 141
1973, Anharmonic oscillator. II. A study of perturbation theory in large order, Phys. Rev. D, 7, 1620, 10.1103/PhysRevD.7.1620
1988, Spectral properties of the scaled quartic anharmonic oscillator, Ann. Phys. (N. Y.), 186, 292, 10.1016/0003-4916(88)90003-6
1988, Nodal properties of the scaled quartic anharmonic oscillator, Ann. Phys. (N. Y.), 186, 325, 10.1016/0003-4916(88)90004-8
1993, Premiers pas en calcul étranger, Ann. Inst. Fourier, 1, 201
1991, Hyperasymptotics for integrals with saddles, Proc. R. Soc. London, Ser. A, 434, 657, 10.1098/rspa.1991.0119
1993, Unfolding the high orders of asymptotic expansions with coalescing saddles: Singularity theory, crossover and duality, Proc. R. Soc. London, Ser. A, 443, 107, 10.1098/rspa.1993.0134
1995, Algebraic analysis of singular perturbations—On exact WKB analysis, Sugaku Expo., 8, 217
1966, Asymptotic behaviour as λ→∞ of the solution of the equation w”(z)−p“z,λ”w(z) = 0 in the complex plane, Russ. Math. Surveys, 21, 1, 10.1070/RM1966v021n01ABEH004145
1994, Modéles de Résurgence paramétrique (fonctions d’Airy et cylindro-paraboliques), J. Math. Pures Appl., 73, 111
1989, Wentzel-Kramers-Brillouin method in the Bargmann representation, Phys. Rev. A, 40, 6814, 10.1103/PhysRevA.40.6814
1980, The mathematical theory of resonances whose widths are exponentially small, Duke Math. J., 47, 845
1982, Large orders and summability of eigenvalue perturbation theory: A mathematical overview, Int. J. Quantum Chem., XXI, 3
1970, Coupling constant analyticity for the anharmonic oscillator, Ann. Phys. (N. Y.), 58, 76, 10.1016/0003-4916(70)90240-X
1983, Multi-instanton contributions in Quantum Mechanics (II), Nucl. Phys. B, 218, 333, 10.1016/0550-3213(83)90369-3