Exact semiclassical expansions for one-dimensional quantum oscillators

Journal of Mathematical Physics - Tập 38 Số 12 - Trang 6126-6184 - 1997
Éric Delabaere1, Hervé Dillinger2, Frédéric Pham2
1UMR CNRS J. A. Dieudonné No. 6621, University of Nice, 06108 Nice Cedex 2, France
2University of Nice, Department of Maths, UMR CNRS J.A. Dieudonné No. 6621, 06108 Nice Cedex 2, France

Tóm tắt

A set of rules is given for dealing with WKB expansions in the one-dimensional analytic case, whereby such expansions are not considered as approximations but as exact encodings of wave functions, thus allowing for analytic continuation with respect to whichever parameters the potential function depends on, with an exact control of small exponential effects. These rules, which include also the case when there are double turning points, are illustrated on various examples, and applied to the study of bound state or resonance spectra. In the case of simple oscillators, it is thus shown that the Rayleigh–Schrödinger series is Borel resummable, yielding the exact energy levels. In the case of the symmetrical anharmonic oscillator, one gets a simple and rigorous justification of the Zinn-Justin quantization condition, and of its solution in terms of “multi-instanton expansions.”

Từ khóa


Tài liệu tham khảo

1969, Anharmonic oscillator, Phys. Rev., 184, 1231, 10.1103/PhysRev.184.1231

1970, Distribution of eigenfrequencies for the wave equation in a finite domain, Ann. Phys. (N. Y.), 60, 401, 10.1016/0003-4916(70)90497-5

1971, Ann. Phys. (N.Y.), 64, 271, 10.1016/0003-4916(71)90286-7

1972, Ann. Phys. (N.Y.), 69, 76, 10.1016/0003-4916(72)90006-1

1971, Asymptotic evaluation of the Green’s function for large Quantum numbers, Ann. Phys. (N. Y.), 63, 592, 10.1016/0003-4916(71)90032-7

1974, Solution of the Schrödinger equation in terms of classical paths, Ann. Phys. (N. Y.), 85, 514, 10.1016/0003-4916(74)90421-7

1983, The return of the quartic oscillator: The complex WKB method, Ann. Inst. H. Poincaré Phys. Theor., 39, 211

1993, Résurgence quantique, Ann. Inst. Fourier, 43, 1509, 10.5802/aif.1381

1990, Développements semi-classiques exacts des niveaux d’énergie d’un oscillateur á une dimension, C. R. Acad. Sci. Paris Ser. I, 310, 141

1973, Anharmonic oscillator. II. A study of perturbation theory in large order, Phys. Rev. D, 7, 1620, 10.1103/PhysRevD.7.1620

1988, Spectral properties of the scaled quartic anharmonic oscillator, Ann. Phys. (N. Y.), 186, 292, 10.1016/0003-4916(88)90003-6

1988, Nodal properties of the scaled quartic anharmonic oscillator, Ann. Phys. (N. Y.), 186, 325, 10.1016/0003-4916(88)90004-8

1993, Premiers pas en calcul étranger, Ann. Inst. Fourier, 1, 201

1990, Hyperasymptotics, Proc. R. Soc. London, Ser. A, 430, 653, 10.1098/rspa.1990.0111

1991, Hyperasymptotics for integrals with saddles, Proc. R. Soc. London, Ser. A, 434, 657, 10.1098/rspa.1991.0119

1993, Unfolding the high orders of asymptotic expansions with coalescing saddles: Singularity theory, crossover and duality, Proc. R. Soc. London, Ser. A, 443, 107, 10.1098/rspa.1993.0134

1995, Algebraic analysis of singular perturbations—On exact WKB analysis, Sugaku Expo., 8, 217

1966, Asymptotic behaviour as λ→∞ of the solution of the equation w”(z)−p“z,λ”w(z) = 0 in the complex plane, Russ. Math. Surveys, 21, 1, 10.1070/RM1966v021n01ABEH004145

1994, Modéles de Résurgence paramétrique (fonctions d’Airy et cylindro-paraboliques), J. Math. Pures Appl., 73, 111

1989, Wentzel-Kramers-Brillouin method in the Bargmann representation, Phys. Rev. A, 40, 6814, 10.1103/PhysRevA.40.6814

1980, The mathematical theory of resonances whose widths are exponentially small, Duke Math. J., 47, 845

1982, Large orders and summability of eigenvalue perturbation theory: A mathematical overview, Int. J. Quantum Chem., XXI, 3

1970, Coupling constant analyticity for the anharmonic oscillator, Ann. Phys. (N. Y.), 58, 76, 10.1016/0003-4916(70)90240-X

1990, Resommation des séries formelles, Numer. Math., 58, 503, 10.1007/BF01385638

1983, Multi-instanton contributions in Quantum Mechanics (II), Nucl. Phys. B, 218, 333, 10.1016/0550-3213(83)90369-3

1984, Instantons in Quantum Mechanics: Numerical evidence for a conjecture, J. Math. Phys., 25, 549, 10.1063/1.526205