Exact asymptotics of component-wise extrema of two-dimensional Brownian motion
Tóm tắt
We derive the exact asymptotics of
$ {\mathbb {P} \left \{ \underset {t\ge 0}{\sup } \left (X_{1}(t) - \mu _{1} t\right )> u, \ \underset {s\ge 0}{\sup } \left (X_{2}(s) - \mu _{2} s\right )> u \right \} },\ \ u\to \infty , $
where (X1(t), X2(s))t, s≥ 0 is a correlated two-dimensional Brownian motion with correlation ρ ∈ [− 1,1] and μ1, μ2 > 0. It appears that the play between ρ and μ1, μ2 leads to several types of asymptotics. Although the exponent in the asymptotics as a function of ρ is continuous, one can observe different types of prefactor functions depending on the range of ρ, which constitute a phase-type transition phenomena.
Tài liệu tham khảo
Adler, R.J., Taylor, J.E.: Random Fields and Geometry. Springer Monographs in Mathematics. Springer, New York (2007)
Azaïs, J., Wschebor, M.: Level sets and extrema of random processes and fields. John Wiley & Sons, New York (2009)
Dȩbicki, K., Hashorva, E., Ji, L., Rolski, T.: Extremal behavior of hitting a cone by correlated Brownian motion with drift. Stoch. Process. Appl. 128(12), 4171–4206 (2018)
Dėbicki, K., Hashorva, E., Krystecki, K.: Finite-time ruin probability for correlated Brownian motions. arXiv:2004.14015 (2020)
Dȩbicki, K., Hashorva, E., Liu, P.: Ruin probabilities and passage times of γ,-reflected Gaussian process with stationary increments. ESAIM: Probability and Statistics 21, 495–535 (2017)
Dȩbicki, K., Hashorva, E., Michna, Z.: Simultaneous ruin probability for two-dimensional Brownian risk model. Accepted for publication in J. Appl. Probab. (2019)
Dȩbicki, K., Hashorva, E., Wang, L.: Extremes of vector-valued Gaussian processes. Stochastic Processes and their Applications. In press (2020)
Dȩbicki, K., Ji, L., Rolski, T.: Logarithmic asymptotics for probability of component-wise ruin in two-dimensional Brownian model. Risks, 7(83) (2019)
Dȩbicki, K., Kosiński, K.M., Mandjes, M., Rolski, T.: Extremes of multidimensional Gaussian processes. Stochastic Process. Appl. 120 (12), 2289–2301 (2010)
Hashorva, E.: Asymptotics bounds for multivariate Gaussian tails. J. Theoret. Probab. 18(1), 79–97 (2005)
Hashorva, E., Ji, L.: Extremes and first passage times of correlated fractional Brownian motions. Stoch. Model. 30(3), 272–299 (2014)
He, H., Keirstead, W.P., Rebholz, J.: Double lookbacks. Math. Financ. 8(3), 201–228 (1998)
Honnappa, H., Jaiswal, P., Pasupathy, R.: Large deviations of gaussian extremes on convex sets. Manuscript. https://web.ics.purdue.edu/pasupath/PAPERS/ldextremes.pdf (2020)
Ji, L.: On the cumulative Parisian ruin of multi-dimensional Brownian motion models Accepted for publication in Scandinavian Actuarial Journal (2020)
Kou, S., Zhong, H.: First-passage times of two-dimensional Brownian motion. Adv. Appl Prob. 48, 1045–1060 (2016)
Lieshout, P., Math, M.: Mandjes. Tandem Brownian queues. Methods Oper. Res. 66, 275–298 (2007)
Mandjes, M.: Large Deviations for Gaussian Queues: Modelling Communication Networks. Wiley, Chichester (2007)
Marshall, A.W., Olkin, I.: A multivariate exponential distribution. J.Amer Statist. Assoc. 62, 30–44 (1967)
Metzler, A.: On the first passage problem for correlated Brownian motion. Stat. Probab. Lett. 80, 277–284 (2010)
Piterbarg, V.I.: Asymptotic Methods in the Theory of Gaussian Processes and Fields, Volume 148 of Translations of Mathematical Monographs. RI, American Mathematical Society, Providence (1996)
Piterbarg, V.I.: High extrema of Gaussian chaos processes. Extremes 19(2), 253–272 (2016)
Resnick, S.: Extreme Values, Regular Variation and Point Processes. Springer-Verlag, Berlin (1987)
Rogers, L.C.G., Shepp, L.: The correlation of the maxima of correlated Brownian motions. J. Appl. Prob. 43, 880–883 (2006)
Shao, J., Wang, X.: Estimates of the exit probability for two correlated Brownian motions. Adv. Appl. Prob.(45):37–50 (2013)
Teunen, M., Goovaerts, M.: Double boundary crossing result for the Browian motion. Scandinavian Actuarial Journal, (2):139–150 (1994)
van der Hofstad, R., Honnappa, H.: Large deviations of bivariate Gaussian extrema. Queueing Syst. 93, 333–349 (2019)