Exact asymptotics of component-wise extrema of two-dimensional Brownian motion

Springer Science and Business Media LLC - Tập 23 - Trang 569-602 - 2020
Krzysztof Dȩbicki1, Lanpeng Ji2, Tomasz Rolski1
1Mathematical Institute, University of Wrocław, Wrocław, Poland
2School of Mathematics, University of Leeds, Woodhouse Lane, United Kingdom

Tóm tắt

We derive the exact asymptotics of $ {\mathbb {P} \left \{ \underset {t\ge 0}{\sup } \left (X_{1}(t) - \mu _{1} t\right )> u, \ \underset {s\ge 0}{\sup } \left (X_{2}(s) - \mu _{2} s\right )> u \right \} },\ \ u\to \infty , $ where (X1(t), X2(s))t, s≥ 0 is a correlated two-dimensional Brownian motion with correlation ρ ∈ [− 1,1] and μ1, μ2 > 0. It appears that the play between ρ and μ1, μ2 leads to several types of asymptotics. Although the exponent in the asymptotics as a function of ρ is continuous, one can observe different types of prefactor functions depending on the range of ρ, which constitute a phase-type transition phenomena.

Tài liệu tham khảo

Adler, R.J., Taylor, J.E.: Random Fields and Geometry. Springer Monographs in Mathematics. Springer, New York (2007) Azaïs, J., Wschebor, M.: Level sets and extrema of random processes and fields. John Wiley & Sons, New York (2009) Dȩbicki, K., Hashorva, E., Ji, L., Rolski, T.: Extremal behavior of hitting a cone by correlated Brownian motion with drift. Stoch. Process. Appl. 128(12), 4171–4206 (2018) Dėbicki, K., Hashorva, E., Krystecki, K.: Finite-time ruin probability for correlated Brownian motions. arXiv:2004.14015 (2020) Dȩbicki, K., Hashorva, E., Liu, P.: Ruin probabilities and passage times of γ,-reflected Gaussian process with stationary increments. ESAIM: Probability and Statistics 21, 495–535 (2017) Dȩbicki, K., Hashorva, E., Michna, Z.: Simultaneous ruin probability for two-dimensional Brownian risk model. Accepted for publication in J. Appl. Probab. (2019) Dȩbicki, K., Hashorva, E., Wang, L.: Extremes of vector-valued Gaussian processes. Stochastic Processes and their Applications. In press (2020) Dȩbicki, K., Ji, L., Rolski, T.: Logarithmic asymptotics for probability of component-wise ruin in two-dimensional Brownian model. Risks, 7(83) (2019) Dȩbicki, K., Kosiński, K.M., Mandjes, M., Rolski, T.: Extremes of multidimensional Gaussian processes. Stochastic Process. Appl. 120 (12), 2289–2301 (2010) Hashorva, E.: Asymptotics bounds for multivariate Gaussian tails. J. Theoret. Probab. 18(1), 79–97 (2005) Hashorva, E., Ji, L.: Extremes and first passage times of correlated fractional Brownian motions. Stoch. Model. 30(3), 272–299 (2014) He, H., Keirstead, W.P., Rebholz, J.: Double lookbacks. Math. Financ. 8(3), 201–228 (1998) Honnappa, H., Jaiswal, P., Pasupathy, R.: Large deviations of gaussian extremes on convex sets. Manuscript. https://web.ics.purdue.edu/pasupath/PAPERS/ldextremes.pdf (2020) Ji, L.: On the cumulative Parisian ruin of multi-dimensional Brownian motion models Accepted for publication in Scandinavian Actuarial Journal (2020) Kou, S., Zhong, H.: First-passage times of two-dimensional Brownian motion. Adv. Appl Prob. 48, 1045–1060 (2016) Lieshout, P., Math, M.: Mandjes. Tandem Brownian queues. Methods Oper. Res. 66, 275–298 (2007) Mandjes, M.: Large Deviations for Gaussian Queues: Modelling Communication Networks. Wiley, Chichester (2007) Marshall, A.W., Olkin, I.: A multivariate exponential distribution. J.Amer Statist. Assoc. 62, 30–44 (1967) Metzler, A.: On the first passage problem for correlated Brownian motion. Stat. Probab. Lett. 80, 277–284 (2010) Piterbarg, V.I.: Asymptotic Methods in the Theory of Gaussian Processes and Fields, Volume 148 of Translations of Mathematical Monographs. RI, American Mathematical Society, Providence (1996) Piterbarg, V.I.: High extrema of Gaussian chaos processes. Extremes 19(2), 253–272 (2016) Resnick, S.: Extreme Values, Regular Variation and Point Processes. Springer-Verlag, Berlin (1987) Rogers, L.C.G., Shepp, L.: The correlation of the maxima of correlated Brownian motions. J. Appl. Prob. 43, 880–883 (2006) Shao, J., Wang, X.: Estimates of the exit probability for two correlated Brownian motions. Adv. Appl. Prob.(45):37–50 (2013) Teunen, M., Goovaerts, M.: Double boundary crossing result for the Browian motion. Scandinavian Actuarial Journal, (2):139–150 (1994) van der Hofstad, R., Honnappa, H.: Large deviations of bivariate Gaussian extrema. Queueing Syst. 93, 333–349 (2019)