Exact Synchronization for a Coupled System of Wave Equations with Dirichlet Boundary Controls

Chinese Annals of Mathematics, Series B - Tập 34 Số 1 - Trang 139-160 - 2013
Tatsien Li1, Bopeng Rao2
1Fudan University
2Institut de Recherche Mathématique Avancée, Université de Strasbourg, Strasbourg, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alabau-Boussouira, F., A two-level energy method for indirect boundary observability and controllability of weakly coupled hyperbolic systems, SIAM J. Control Optim., 42, 2003, 871–906.

Fujisaka, H. and Yamada, T., Stability theory of synchronized motion in coupled-oscillator systems, Progress of Theoretical Physics, 69, 1983, 32–47.

Garofalo, N. and Lin, F., Unique continuation for elliptic operators: a geometric-variational approach, Comm. Pure Appl. Math., 40, 1987, 347–366.

Huygens, C., Horologium Oscillatorium Sive de Motu Pendulorum ad Horologia Aptato Demonstrationes Geometricae, Apud F. Muguet, Parisiis, 1673.

Komornik, V. and Loreti, P., Fourier Series in Control Theory, Springer-Verlag, New York, 2005.

Krabs, W., On Moment Theory and Controllability of One-Dimensional Vibrating Systems and Heating Processes, Lecture Notes in Control and Information Sciences, 173, Springer-Verlag, Berlin, 1992.

Yu, L., Exact boundary controllability for a kind of second-order quasilinear hyperbolic systems and its applications, Math. Meth. Appl. Sci., 33, 2010, 273–286.

Li, T. T. and Rao, B. P., Strong (weak) exact controllability and strong (weak) exact observability for quasilinear hyperbolic systems, Chin. Ann. Math., 31B(5), 2010, 723–742.

Li, T. T. and Rao, B. P., Asymptotic controllability for linear hyperbolic systems, Asymptotic Analysis, 72, 2011, 169–187.

Lions, J. L., Controlabilité Exacte, Perturbations et Stabilisation de Systèms Distribués, Vol. 1, Masson, Paris, 1988.

Liu, Z. and Rao, B. P., A spectral approach to the indirect boundary control of a system of weakly coupled wave equations, Discrete Contin. Dyn. Syst., 23, 2009, 399–414.

Loreti, P. and Rao, B. P., Optimal energy decay rate for partially damped systems by spectral compensation, SIAM J. Control Optim., 45, 2006, 1612–1632

Mehrenberger, M., Observability of coupled systems, Acta Math. Hungar., 103, 2004, 321–348.

Wang, K., Exact boundary controllability for a kind of second-order quasilinear hyperbolic systems, Chin. Ann. Math., 32B(6), 2011, 803–822.

Young, R., An Introduction to Nonharmonic Fourier Series, Academic Press, New York, London, 1980.