Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Giải pháp chính xác của phương trình Boltzmann với nguồn
Tóm tắt
Các giải pháp chính xác của một phương trình động học Boltzmann phi tuyến với nguồn được xây dựng trong trường hợp hàm phân phối đồng nhất và mô hình Maxwell của tán xạ đồng nhất. Các giải pháp này được xây dựng bằng cách sử dụng một nhóm tương đương mà một trong những phép biến đổi của nó xác định duy nhất lớp các hàm nguồn có tính chất tuyến tính theo hàm phân phối; hơn nữa, phương trình đã được biến đổi có phía bên phải bằng không. Kết quả là, các giải pháp bất biến của loại giải pháp Bobylev–Krook–Wu có thể được tìm thấy một cách rõ ràng, đặc biệt là những giải pháp cho phép diễn giải vật lý.
Từ khóa
#phương trình Boltzmann #động học phi tuyến #tán xạ đồng nhất #giải pháp bất biến #mô hình MaxwellTài liệu tham khảo
S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases (Cambridge University Press, 1958).
V. C. Boffi and G. Spiga, “Nonlinear Diffusion of Test Particles in the Presence of an External Conservative Force,” J. Phys. Fluids 25, 1987–1992 (1982).
L. V. Ovsyannikov, Group Analysis of Differential Equations (Nauka, Moscow, 1978; Academic Press, New York, 1982).
T. F. Nonenmacher, “Application of the Similarity Method to the Nonlinear Boltzmann Equation,” Z. Angev. Math. Phys. 35 (5), 680–691 (1984).
M. Krook and T. T. Wu, “Formation of Maxwellian Tails,” Phys. Rev. Lett. 36 (19), 1107–1109 (1976).
Yu. N. Grigoriev, S. V. Meleshko, and A. Suriyawichitseranee, “On Group Classification of the Spatially Homogeneous and Isotropic Boltzmann Equation with Sources II,” Int. Non-Linear Mech. 61, 15–18 (2014).
A. V. Bobylev, “Fourier Transform in the Boltzmann Control Theory for Maxwell Molecules,” Dokl. Akad. Nauk SSSR 225 (5), 1041–1044 (1975).
Yu. N. Grigoriev, S. V. Meleshko, and A. Suriyawichitseranee, “Group Analysis of the Spatially Homogeneous and Isotropic Boltzmann Equation with Source Term,” Comm. Nonlinear Sci. Numer. Simulat. 20, 719–730 (2015).
I. S. Akhatov, R. K. Gazizov, and N. Kh. Ibragimov, “Nonlocal Symmetries. Heuristic Approach,” in Results of Science and Engineering, Ser. Advanced Problems of Mathematics. New Achievements, Vol. 34 (VINITI, Moscow, 1989).
N. H. Ibragimov, M. Torrisi, and A. Valenti, “Preliminary Group Classification of Equation vtt = f(x, vx)vxx + g(x, vx),” J. Math. Phys. 32 (11), 2988–2995 (1991).
D. S. Cardoso-Bihlo, A. Bihlo, and R. O. Popovych, “Enhanced Preliminary Group Classification of a Class of Generalized Diffusion Equations,” Comm. Nonlinear Sci. Numer. Simulat. 16, 3622–3638 (2011).
Yu. N. Grigor’ev and S. V. Meleshko, “Group Analysis of the Integrodifferential Boltzmann Equation,” Dokl. Akad. Nauk SSSR 297 (2), 323–327 (1987).
L. Feng-Shan, A. Karnbanjong, A. Suriyawichitseranee, et al., “Application of a Lie Group Admitted by a Homogeneous Equation for Group Classification of a Corresponding Inhomogeneous Equation,” Comm. Nonlinear Sci. Numer. Simulat. 48, 350–360 (2017).
G. Spiga, “A Generalized BKW Solution of the Nonlinear Boltzmann Equation with Removal,” Phys. Fluids 27 (11), 2599–2600 (1984).
A. V. Bobylev, “On Exact Solutions of the Boltzmann Equation,” Dokl. Akad. Nauk SSSR, 225 (6), 1296–1299 (1975).
A. Santos and J. J. Brey, “Comments on “A Generalized BKW Solution of the Nonlinear Boltzmann Equation with Removal” [Phys. Fluids 27, 2599 (1984)],” Phys. Fluids 29 (5), 1750 (19896).
Yu. N. Grigoriev, N. H. Ibragimov, V. F. Kovalev, and S. V. Meleshko, Symmetries of Integro-Differential Equation with Applications in Mechanics and Plasma Physics (Springer, Berlin–Heidelberg, 2010). (Lecture Notes in Physics; Vol. 806.)