Exact Bayesian inference for the Bingham distribution

Statistics and Computing - Tập 26 - Trang 349-360 - 2014
Christopher J. Fallaize1, Theodore Kypraios1
1School of Mathematical Sciences, University Park, University of Nottingham, Nottingham, UK

Tóm tắt

This paper is concerned with making Bayesian inference from data that are assumed to be drawn from a Bingham distribution. A barrier to the Bayesian approach is the parameter-dependent normalising constant of the Bingham distribution, which, even when it can be evaluated or accurately approximated, would have to be calculated at each iteration of an MCMC scheme, thereby greatly increasing the computational burden. We propose a method which enables exact (in Monte Carlo sense) Bayesian inference for the unknown parameters of the Bingham distribution by completely avoiding the need to evaluate this constant. We apply the method to simulated and real data, and illustrate that it is simpler to implement, faster, and performs better than an alternative algorithm that has recently been proposed in the literature.

Tài liệu tham khảo

Andrieu, C., Thoms, J.: A tutorial on adaptive mcmc. Stat. Comput. 18(4), 343–373 (2008) Arnold, R., Jupp, P.E.: Statistics of orthogonal axial frames. Biometrika 100(3), 571–586 (2013) Aune, E., Simpson, D.P., Eidsvik, J.: Parameter estimation in high dimensional gaussian distributions. Stat. Comput. 24, 1–17 (2012) Bingham, C.: An antipodally symmetric distribution on the sphere. Ann. Stat. 2, 1201–1225 (1974) Boomsma, W., Mardia, K.V., Taylor, C.C., Ferkinghoff-Borg, J., Krogh, A., Hamelryck, T.: A generative, probabilistic model of local protein structure. Proc. Natl. Acad. Sci. USA 105(26), 8932–8937 (2008) Caimo, A., Friel, N.: Bayesian inference for exponential random graph models. Soc. Net. 33(1), 41–55 (2011) Ehler, M., Galanis, J.: Frame theory in directional statistics. Stat. Probab. Lett. 81(8), 1046–1051 (2011) Everitt, R.G.: Bayesian parameter estimation for latent markov random fields and social networks. J. Comput. Gr. Stat. 21(4), 940–960 (2012) Friel, N.: Evidence and bayes factor estimation for gibbs random fields. J. Comput. Gr. Stat. 22(3), 518–532 (2013) Ganeiber, A.M.: Estimation and simulation in directional and statistical shape models. PhD thesis, University of Leeds (2012) Girolami, M., Lyne A.M., Strathmann, H., Simpson, D., Atchade, Y.: Playing russian roulette with intractable likelihoods. ArXiv preprint; arXiv:1306.4032, (2013) Hamelryck, Thomas: Kanti V Mardia. Jesper Ferkinghoff-Borg. Bayesian methods in structural bioinformatics. Springer-Verlag, Berlin (2012) Kent, J.T.: Asymptotic expansions for the Bingham distribution. J. Roy. Stat. Soc. Ser. C 36(2), 139–144 (1987) Kent, J.T., Ganeiber, A.M., Mardia, K.V.: A new method to simulate the Bingham and related distributions in directional data analysis with applications. ArXiv Preprint, (2013). http://arxiv.org/abs/1310.8110 Kume, A., Wood, A.T.A.: Saddlepoint approximations for the Bingham and Fisher-Bingham normalising constants. Biometrika 92(2), 465–476 (2005) Kume, A., Wood, A.T.A.: On the derivatives of the normalising constant of the Bingham distribution. Stat. Probab. Lett. 77(8), 832–837 (2007) Kume, A., Walker, S.G.: Sampling from compositional and directional distributions. Stat. Comput. 16(3), 261–265 (2006) Levine, J.D., Funes, P., Dowse, H.B., Hall, J.C.: Resetting the circadian clock by social experience in drosophila melanogaster. Sci. Signal. 298(5600), 2010–2012 (2002) Mardia, K.V., Zemroch, P.J.: Table of maximum likelihood estimates for the bingham distribution. Statist. Comput. Simul. 6, 29–34 (1977) Mardia, K.V., Jupp, P.E.: Directional statistics. Wiley Series in probability and statistics. John Wiley & Sons Ltd., Chichester (2000). ISBN 0-471-95333-4 Møller, J., Pettitt, A.N., Reeves, R., Berthelsen, K.K.: An efficient Markov chain Monte Carlo method for distributions with intractable normalising constants. Biometrika 93(2), 451–458 (2006) Murray, I., Ghahramani, Z., MacKay, D.J.C.: MCMC for doubly-intractable distributions. In Proceedings of the 22nd annual conference on uncertainty in artificial intelligence (UAI-06), pages 359–366. AUAI Press (2006) Ripley, B.D.: Stochastic simulation. Wiley Series in probability and mathematical statistics: applied probability and statistics. John Wiley & Sons Inc., New York, (1987). ISBN 0-471-81884-4. doi:10.1002/9780470316726 Rueda, C., Fernández, M.A., Peddada, S.D.: Estimation of parameters subject to order restrictions on a circle with application to estimation of phase angles of cell cycle genes. J. Am. Stat. Assoc. 104(485), 338–347 (2009) Sei, T., Kume, A.: Calculating the normalising constant of the bingham distribution on the sphere using the holonomic gradient method. Stat. Comput., 1–12 (2013) Storvik, G.: On the flexibility of Metropolis–Hastings acceptance probabilities in auxiliary variable proposal generation. Scandinavian J. Stat. 38(2), 342–358 (2011) Tyler, D.E.: Statistical analysis for the angular central Gaussian distribution on the sphere. Biometrika 74(3), 579–589 (1987) Walker, S.G.: Posterior sampling when the normalizing constant is unknown. Comm. Stat. Simul. Comput. 40(5), 784–792 (2011) Walker, S.G.: Bayesian estimation of the Bingham distribution. Braz. J. Probab. Stats. 28(1), 61–72 (2014)