Evolving cellular automata to generate nonlinear sequences with desirable properties

Applied Soft Computing - Tập 7 - Trang 1131-1134 - 2007
Syn Kiat Tan1, Sheng-Uei Guan2
1Department of Electrical and Computer Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
2School of Engineering & Design, Brunel University, Uxbridge, Middlesex UB8 3PH, UK

Tài liệu tham khảo

Pal Chaudhuri, 1997, vol. 1 Cattell, 1995, vol. 6 Tomassini, 2001, Cryptography with Cellular Automata, Appl. Soft Comput., 1, 151, 10.1016/S1568-4946(01)00015-1 Seredynski, 2004, Cellular automata computations and secret key cryptography, J. Parallel Comput., 30, 753, 10.1016/j.parco.2003.12.014 Guan, 2003, An evolutionary approach to the design of controllable cellular automata structure for random number generation, IEEE Trans. Evol. Comput., 7, 23, 10.1109/TEVC.2002.806856 Clark, 2000, Two stage optimization in the design of Boolean functions, 242 Marsaglia, “DIEHARD”, http://stat.fsu.edu/∼geo/diehard.html, 1998. Menezes, 1997 Fuller, 2002, Efficient algorithms for analysis of cryptographic Boolean functions, 133 Maitra, 2002, Cryptographically significant Boolean functions with five valued Walsh spectra, Theor. Comput. Sci., 276, 133, 10.1016/S0304-3975(01)00196-7 Cvetkovic, 2002, Preference and application in evolutionary multiobjective optimization, IEEE Trans. Evol. Comput., 6, 42, 10.1109/4235.985691 Rane, 2005, Modeling the recrystallization process using inverse cellular automata and genetic algorithms: studies using differential evolution, J. Phase Equilib. Diff., 26, 311, 10.1007/s11669-005-0080-x Dewri, 2005, Simulating recrystallization through cellular automata and genetic algorithms, Mod. Simul. Mater. Sci. Eng., 13, 173, 10.1088/0965-0393/13/2/002