Evolutionary multi-objective optimization: some current research trends and topics that remain to be explored

Carlos A. Coello Coello1,2
1Evolutionary Computation Group, Departamento de Computcaión, Ginvestav-IPN, México D. F., México
2UMI-LAFMIA 3175 CNRS, México D. F., México

Tóm tắt

Từ khóa


Tài liệu tham khảo

Goldberg D E. Genetic Algorithms in Search, Optimization and Machine Learning. Reading: Addison-Wesley Publishing Company, 1989

Eiben A E, Smith J E. Introduction to Evolutionary Computing. Berlin: Springer, 2003

Coello Coello C A, Lamont G B, Van Veldhuizen D A. 2nd ed. Evolutionary Algorithms for Solving Multi-Objective Problems. New York: Springer, 2007

Deb K. Multi-Objective Optimization using Evolutionary Algorithms. Chichester: John Wiley & Sons, 2001

Coello Coello C A. An updated survey of GA-based multiobjective optimization techniques. ACM Computing Surveys, 2000, 32(2): 109–143

Miettinen K M. Nonlinear Multiobjective Optimization. Boston: Kluwer Academic Publishers, 1999

Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms. PhD thesis. Nashville: Vanderbilt University, 1984

Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms. In: Proceedings of the First International Conference on Genetic Algorithms and their Applications, 1985, 93–100

Coello Coello C A. Evolutionary multiobjective optimization: a historical view of the field. IEEE Computational Intelligence Magazine, 2006, 1(1): 28–36

Fonseca C M, Fleming P J. Genetic algorithms for multiobjective optimization: formulation, discussion and generalization. In: Forrest S, ed. Proceedings of the Fifth International Conference on Genetic Algorithms. San Fransisco: Morgan Kaufmann Publishers, 1993, 416–423

Horn J, Nafpliotis N, Goldberg D E. A niched Pareto genetic algorithm for multiobjective optimization. In: Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence. Piscataway: IEEE Service Center, 1994, 1: 82–87

Srinivas N, Deb K. Multiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation, 1994, 2(3): 221–248

Husbands P. Distributed coevolutionary genetic algorithms for multicriteria and multi-constraint optimisation. In: Fogarty T C, ed. Evolutionary Computing. Springer-Verlag, LNCS, 1994, 865: 150–165

Osyczka A, Kundu S. A genetic algorithm approach to multicriteria network optimization problems. In: Proceedings of the 20th International Conference on Computers and Industrial Engineering, 1996, 329–332

Zitzler E, Thiele L. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 1999, 3(4): 257–271

Knowles J D, Corne D W. Approximating the nondominated front using the Pareto archived evolution strategy. Evolutionary Computation, 2000, 8(2): 149–172

Zitzler E, Laumanns M, Thiele L. SPEA2: improving the strength Pareto evolutionary algorithm. In: Giannakoglou K, Tsahalis D, Periaux J, Papailou P, Fogarty T, eds. Proceedings of EUROGEN 2001-Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, 2002, 95–100

Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182–197

Babbar M, Lakshmikantha A, Goldberg D E. A modified NSGA-II to solve noisy multiobjective problems. In: Foster J, ed. Proceedings of 2003 Genetic and Evolutionary Computation Conference. Late-Breaking Papers. Chicago: AAAI, 2003, 21–27

Jozefowiez N, Semet F, Talbi E G. Enhancements of NSGA II and its application to the vehicle routing problem with route balancing. In: Talbi E G, Liardet P, Collet P, Lutton E, Schoenauer M, eds. Proceedings of Artificial Evolution, 7th International Conference, Evolution Artificielle, EA 2005. Lille: Springer, LNCS, 2005, 3871: 131–142

Nojima Y, Narukawa K, Kaige S, Ishibuchi H. Effects of removing overlapping solutions on the performance of the NSGA-II algorithm. In: Coello Coello C A, Hernández-Aguirre A, Zitzler E, eds. Proceedings of Evolutionary Multi-Criterion Optimization, Third International Conference (EMO 2005). Guanajuato: Springer, LNCS, 2005, 3410: 341–354

Köppen M, Yoshida K. Substitute distance assignments in NSGA-II for handling many-objective optimization problems. In: Obayashi S, Deb K, Poloni C, Hiroyasu T, Murata T, eds. Proceedings of Evolutionary Multi-Crterion Optimization, 4th International Conference (EMO 2007). Matshushima: Springer, LNCS, 2007, 4403: 727–741

Goldberg D E, Richardson J. Genetic algorithm with sharing for multimodal function optimization. In: Grefenstette J J, ed. Proceedings of Genetic Algorithms and Their Applications, the Second International Conference on Genetic Algorithms. Hillsdale: Lawrence Erlbaum, 1987, 41–49

Deb K, Goldberg D E. An investigation of niche and species formation in genetic function optimization. In: Schaffer J D, ed. Proceedings of the Third International Conference on Genetic Algorithms. San Mateo: Morgan Kaufmann Publishers, 1989, 42–50

Knowles J, Corne D. Properties of and adaptive archiving algorithm for storing nondominated vectors. IEEE Transactions on Evolutionary Computation, 2003, 7(2): 100–116

Cui X X, Li M, Fang T J. Study of population diversity of multiobjective evolutionary algorithm based on immune and entropy principles. In: Proceedings of the Congress on Evolutionary Computation 2001 (CEC’2001). Piscataway: IEEE Service Center, 2001, 2: 1316–1321

Farhang-Mehr A, Azarm S. Diversity assessment of Pareto optimal solution sets: an entropy approach. In: Proceedings of Congress on Evolutionary Computation (CEC’2002). Piscataway: IEEE Service Center, 2002, 1: 723–728

Farhang-Mehr A, Azarm S. Entropy-based multi-objective genetic algorithm for design optimization. Structural and Multidisciplinary Optimization, 2002, 24(25): 351–361

Zitzler E, Künzli S. Indicator-based selection in multiobjective search. In: Yao X, et al, eds. Parallel Problem: Solving from Nature — PPSN VIII. Birmingham: Springer-Verlag, LNCS, 2004, 3242: 832–842

Zitzler E, Thiele L, Laumanns M, Fonseca C M, Da Fonseca V G. Performance assessment of multiobjective optimizers: an analysis and review. IEEE Transactions on Evolutionary Computation, 2003, 7(2): 117–132

Zitzler E, Thiele L, Bader J. SPAM: set preference alogrithm for multiobjective optimization. In: Rudolph G, Jansen T, Lucas S, Poloni C, Beume N, eds. Parallel Problem Solving from Nature-PPSN X. Dortmund: Springer, LNCS, 2008, 5199: 847–858

Emmerich M, Beume N, Naujoks B. An EMO algorithm using the hypervolume measure as selection criterion. In: Coello Coello C A, Hernández-Aguirre A, Zitzler E, eds. Proceedings of Evolutionary Multi-Criterion Optimization, Third International Conference (EMO 2005). Guanajuato: Springer, LNCS, 2005, 3410: 62–76

Beume N, Naujoks B, Emmerich M. SMS-EMOA: Multiobjective selection based on dominated hypervolume. European Journal of Operational Research, 2007, 181(3): 1653–1669

Zitzler E, Thiele L. Multiobjective optimization using evolutionary algorithms—a comparative study. In: Eiben A E, ed. Parallel Problem Solving from Nature V. Amsterdam: Springer-Verlag, 1998, 292–301

Zitzler E. Evolutionary algorithms for multiobjective optimization: Methods and application. PhD thesis. Zurich: Swiss Federal Institute of Technology (ETH), 1999

Igel C, Hansen N, Roth S. Covariance matrix adaptation for multiobjective optimization. Evolutionary Computation, 2007, 15(1): 1–28

Igel C, Suttorp T, Hansen N. Steady-state selection and efficient covariance matrix update in the multi-objective CM-ES. In: Obayashi S, Deb K, Poloni C, Hiroyasu T, Murata T, eds. Proceedings of 4th International Conference on Evolutionary Multi-Criterion Optimization (EMO 2007). Matshushima: Springer, LNCS, 2007, 4403: 171–185

Sefrioui M, Periaux J. Nash genetic algorithms: examples and applications. In: Proceeding of 2000 Congress on Evolutionary Computation. San Diego: IEEE Service Center, 2000, 1: 509–516

Landa-Becerra R, Coello Coello C A. Solving hard multiobjective optimization problems using ε-constraint with cultured differential evolution. In: Runarsson T P, Beyer H G, Burke E, Merelo-Gurervós J J, Whitley D L, Yao X, eds. Proceedings of 9th International Conference on Parallel Problem Solving from Nature-PPSN IX. Reykjavk: Springer, LNCS, 2006, 4193: 543–552

Nebro A J, Durillo J J, Luna F, Dorronsoro B, Alba E. A cellular genetic algorithm for multiobjective optimization. In: Pelta D A, Krasnogor N, eds. Proceedings of the Workshop on Nature Inspired Cooperative Strategies for Optimization (NICSO 2006), 2006, 25–36

Nebro A J, Durillo J J, Luna F, Dorronsoro B, Alba E. Design issues in a multiobjective cellular genetic algorithm. In: Obayashi S, Deb K, Poloni C, Hiroyasu T, Murata T, eds. Proceedings of 4th International Conference on Evolutionary Multi-Criterion Optimization (EMO 2007). Matshushima: Springer, LNCS, 2007, 4403: 126–140

Coello Coello C A, Toscano-Pulido G. Multiobjective optimization using a micro-genetic algorithm. In: Spector L, Good-man E D, Wu A, Langdon W B, Voigt H M, Gen M, Sen S, Dorigo M, Pezeshk S, Garzon M H, Burke E, eds. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’2001). San Francisco: Morgan Kaufmann Publishers, 2001, 274–282

Toscano-Pulido G, Coello Coello C A. The micro genetic algorithm 2: towards online adaptation in evolutionary multiobjective optimization. In: Fonseca C M, Fleming P J, Zitzler E, Deb K, Thiele L, eds. Proceedings of Second International Conference on Evolutionary Multi-Criterion Optimization (EMO 2003). Faro: Springer, LNCS, 2003, 2632: 252–266

Jensen M T. Reducing the run-time complexity of multionbjective EAs: the NSGA-II and other algorithms. IEEE Transactions on Evolutionary Computation, 2003, 7(5): 503–515

Kung H T, Luccio F, Preparata F P. On finding the maxima of a set of vectors. Journal of the Association for Computing Machinery, 1975, 22(4): 469–476

Rohling G. Multiple objective evolutionary algorithms for independent, computationally expensive objective evaluations. PhD thesis. Atlanta: Georgia Institute of Technology, 2004

Yukish MA. Algorithms to identify Pareto points in multi-dimensional data sets. PhD thesis. Philadelphia: Pennsylvania State University, 2004

Krishnakumar K. Micro-genetic algorithms for stationary and nonstationary function optimization. In: Proceedings of SPIE: Intelligent Control and Adaptive Systems, 1989, 1196: 289–296

Won K S, Ray T. Performance of Kriging and Cokriging based surrogate models within the unified framework for surrogate assisted optimization. In: Proceedings of 2004 Congress on Evolutionary Computation (CEC’2004). Portland: IEEE Service Center, 2004, 2: 1577–1585

Karakasis M K, Giannakoglou K C. Metamodel-assisted multiobjective evolutionary optimization. In: Schilling R, Haase W, Periaux J, Baier H, Bugeda G, eds. Proceedings of EUROGEN 2005-Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, 2005

Voutchkov I, Kene A J. Multiobjective optimization using surrogates. In: Parmee I C, ed. Proceedings of the Seventh International Conference on Adaptive Computing in Design and Manufacture 2006. Bristol: The institute for People-centred Computation, 2006, 167–175

Knowles J. ParEGO: A hybrid algorithm with on-line landscape approximation for exersive multiobjective optimization problems. IEEE Transactions on Evolutionary Computation, 2006, 10(1): 50–66

Ray T, Smith W. A surrogate assisted parallel multiobjective evlutionary algorithm for robust engineering design. Engineering Optimization, 2006, 38(8): 997–1011

Reynolds R G, Michalewiez Z, Cavaretta M. Using cultural algorithms for constraint handing in GENOCOP. In: McDonnell J R, Reynolds R G, Fogel D B, eds. Proceedings of the Fourth Annual Conference on Evolutionary Programming. Cambridge: MIT Press, 1995, 298–305

Coello Coello C A, Landa-Becerra R. Evolutionary multionbjective optimization using a cultural algorithm. In: Proceedings of 2003 IEEE Swarm Intelligence Symposium. Indianapolis: IEEE Service Center, 2003

Jin Y C. A comprehensive survey of fitness approximation in evolutionary computation. Soft Computing, 2005, 9(1): 3–12

Smith R E, Dike B A, Stegmann S A. Fitness inheritance in genetic algorithms. In: Proceedings of the 1995 ACM Symposium on Applied Computing. Nashville: ACM Press, 1995, 345–350

Bui L T, Abbass H A, Essam D. Fitness inheritance for noisy evolutionary multi-objective optimization. In: Beyer H G, et al, eds. Proceedings of 2005 Genetic and Evolutionary Computation Conference (GECCO’2005). New York: ACM Press, 2005, 1: 779–785

Reyes-Sierra M, Coello Coeello C A. A study of fitness inheritance and approximation techniques for multi-objective particle swarm optimization. In: Proceedings of 2005 IEEE Congress on Evolutionary Computation (CEC’2005). Edinburgh: IEEE Service Center, 2005, 1: 65–72

Landa-Becerra R, Santana-Quintero L V, Coello Coello C A. Knowledge incorporation in multi-objective evolutionary algorithms. In: Ghosh A, Dehuri S, Ghosh S, eds. Multi-objective Evolutionary Algorithms for Knowledge Discovery from Data Bases. Berlin: Springer, 2008, 23–46

Hernández-Díaz A G, Santana-Quintero L V, Coello Coello C A, Caballero R, Molin A J. A new proposal for multi-objective optimization using differential evolution and rough sets theory. In: Keijzer M, et al, eds. Proceedings of 2006 Genetic and Evolutionary Computation Conference (GECCO’2006). Seattle: ACM Press, 2006, 1: 675–682

Santana-Quintero L V, Ramírez N, Coello Coello C A. A multiobjective particle swarm optimizer hybridized with scatter search. In: Gelbukh A, Reyes-Garcia C A, eds. Proceedings of MICAI 2006: Advances in Artificial Intelligence, 5th Mexican International Conference on Artificial Intelligence. Apizaco: Springer, 2006, LNAI, 4293: 294–304

Wanner E F, Guimaráe S F G, Takahashi R H C, Fleming P J. Local search with quadratic approximations into memetic algorithms for optimization with multiple criteria. Evolutionary Computation, 2008, 16(2): 185–224

Adra S F, Griffin I, Fleming P J. An informed convergence accelerator for evolutionary multiobjective optimiser. In: Thierens D, ed. Proceedings of 2007 Genetic and Evolutionary Computation Conference (GECCO’2007). London: ACM Press, 2007, 1: 734–740

Adra S F. Improving convergence, diversity and pertinency in multiobjective optimisation. PhD thesis. Sheffield: The University of Sheffield, 2007

Kokolo I, Hajime K, Shigenobu K. Failure of Pareto-based MOEAs: does non-dominated really mean near to optimal? In: Proceedings of the Congress on Evolutionary Computation 2001 (CEC’2001). Piscataway: IEEE Service Center, 2001, 2: 957–962

Laumanns M, Thiele L, Deb K, Zitzler E. Combining convergence and diversity in evolutionary multi-objective optimization. Evolutionary Computation, 2002, 10(3): 263–282

Villalobos-Arias M A, Toscano Pulido G, Coello Coello C A. A proposal to use stripes to maintain diversity in a multi-objective particle swarm optimizer. In: Proceedings of 2005 IEEE Swarm Intelligence Symposium (SIS’05). IEEE Press, 2005, 22–29

Hernández-Díaz A G, Santana-Quintero L V, Coello Coello C A, Molin A J. Pareto-adaptive ε-dominance. Evolutionary Computation, 2007, 15(4): 493–517

Deb K, Mohan M, Mishra S. Towards a quick computation of wellspread Pareto-optimal solutions. In: Fonseca CM, Fleming P J, Zitzler E, Deb K, Thiele L, eds. Proceedings of Evolutionary Multi-Criterion Optimization, Second International Conference (EMO 2003). Faro: Springer, LNCS, 2003, 2632: 222–236

Mostaghim S, Teich J. The role of ε-dominance in multi objective particle swarm optimization methods. In: Proceedings of the 2003 Congress on Evolutionary Computation (CEC’2003). Canberra: IEEE Press, 2003, 3: 1764–1771

Deb K, Mohan M, Mishra S. Evaluating the ε-domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solutions. Evolutionary Computation, 2005, 13(4): 501–525

Santana-Quintero L V, Coello Coello C A. An algorithm based on differential evolution for multi-objective problems. International Journal of Computational Intelligence Research, 2005, 1(2): 151–169

Khare V, Yao X, Deb K. Performance scaling of multi-objective evolutionary algorithms. In: Fonseca C M, Fleming P J, Zitzler E, Deb K, Thiele L, eds. Proceedings of Second International Conference on Evolutionary Multi-Criterion Optimization (EMO 2003). Faro: Springer, LNCS, 2003, 2632: 376–390

Hughes E J. Evolutionary many-objective optimisation: many once or one many? In: Proceedings of 2005 IEEE Congress on Evolutionary Computation (CEC’2005). Edinburgh: IEEE Service Center, 2005, 1: 222–227

Wagner T, Beume N, Naujoks B. Pareto-, aggregation-, and indicatorbased methods in many-objective optimization. In: Obayashi S, Deb K, Poloni C, Hiroyasu T, Murata T, eds. Proceedings of Evolutionary Multi-Criterion Optimization, 4th International Conference (EMO 2007). Matshushima: Springer, LNCS, 2007, 4403: 742–756

Farina M, Amato P. On the optimal solution definition for manycriteria optimization problems. In: Proceedings of the NAFIPSFLINT International Conference’ 2002, Piscataway: IEEE Service Center, 2002, 233–238

Knowles J, Corne D. Quantifying the effects of objective space dimension in evolutionary multiobjective optimization. In: Obayashi S, Deb K, Poloni C, Hiroyasu T, Murata T, eds. Proceedings of Evolutionary Multi-Criterion Optimization, 4th International Conference (EMO 2007). Matshushima: Springer, LNCS, 2007, 4403: 757–771

Purshouse R C. On the evolutionary optimisation of many objectives. PhD thesis. Sheffield: The University of Sheffield, 2003

Purshouse R C, Fleming P J. On the evolutionary optimization of many conflicting objectives. IEEE Transactions on Evolutionary Algorithms, 2007, 11(6): 770–784

Di Pierro F. Many-objective evolutionary algorithms and applications to water resources engineering. PhD thesis. Exeter: University of Exeter, 2006

Di Pierro F, Khu S T, Savić D A. An investigation on preference order ranking scheme for multiobjective evolutionary optimization. IEEE Transactions on Evolutionary Computation, 2007, 11(1): 17–45

Farina M, Amato P. A fuzzy definition of “optimality” for manycriteria optimization problems. IEEE Transactions on Systems, Man, and Cybernetics Part A—Systems and Humans, 2004, 34(3): 315–32

Sülflow A, Drechsler N, Drechsler R. Robust multi-objective optimization in high dimensional spaces. In: Obayashi S, Deb K, Poloni C, Hiroyasu T, Murata T, eds. Proceedings of Evolutionary Multi-Criterion Optimization, 4th International Conference (EMO 2007). Matshushima: Springer, LNCS, 2007, 4403: 715–726

Saxena D K, Deb K. Non-linear dimensionality reduction procedures for certain large-dimensional multi-objective optimization problems: employing correntropy and a novel maximum variance unfolding. In: Obayashi S, Deb K, Poloni C, Hiroyasu T, Murata T, eds. Proceedings of Evolutionary Multi-Criterion Optimization, 4th International Conference (EMO 2007). Matshushima: Springer, LNCS, 2007, 4403: 772–787

Brockhoff D, Zitzler E. Are all objectives necessary? On dimensionality reduction in evolutionary multiobjective optimization. In: Runarsson T P, Beyer H G, Burke E, Merelo-Guervós J J, Whitley L D, Yao X, eds. Proceedings of Parallel Problem Solving from Nature — PPSN IX, 9th International Conference. Reykjavik: Springer, LNCS, 2006, 4193: 533–542

Jaimes A L, Coello Coello C A, Chakraborty D. Objective reduction using a feature selection technique. In: Proceedings of 2008 Genetic and Evolutionary Computation Conference (GECCO’2008). Atlanta: ACM Press, 2008, 674–680

Durillo J J, Nebro A J, Coello Coello C A, Luna F, Alba E. A comparative study of the effect of parameter scalability in multi-objective metaheuristics. In: Proceedings of 2008 Congress on Evolutionary Computation (CEC’2008). Hong Kong: IEEE Service Center, 2008, 1893–1900

Nebro A J, Luna F, Alba E, Dorronsoro B, Durillo J J, Beha M A. AbYSS: adapting scatter search to multiobjective optimization. IEEE Transactions on Evolutionary Computation, 2008, 12(4): 439–457

Corne D, Dorigo M, Glover F, eds. New Ideas in Optimization. London: McGraw-Hill, 1999

De Castro L N, Timmis J. An Introduction to Artificial Immune Systems: A New Computational Intelligence Paradigm. London: Springer, 2002

Dasgupta D, ed. Artificial Immune Systems and Their Applications. Berlin: Springer-Verlag, 1999

De Castro L N, Von Zuben F J. Learning and optimization using the clonal selection principle. IEEE Transactions on Evolutionary Computation, 2002, 6(3): 239–251

Luh G C, Chued C H, Liu W W. MOIA: multi-objective immune algorithm. Engineering Optimization, 2003, 35(2): 143–164

Luh G C, Chued C H. Multi-objective optimal design of truss structure with immune algorithm. Computers and Structures, 2004, 82: 829–844

Coello Coello C A, Cruz-Cortés N. Solving multionbjective optimization problems using an artificial immune system. Genetic Programming and Evolvable Machines, 2005, 6(2): 163–190

Freschi F, Repetto M. VIS: an artificial immune network for multiobjective optimization. Engineering Optimization, 2006, 38(8): 975–996

Campelo F, Guimaráes F G, Igarashi H. Overview of artificial immune systems for multi-objective optimization. In: Obayashi S, Deb K, Poloni C, Hiroyasu T, Murata T, eds. Proceedings of Evolutionary Multi-Criterion Optimization, 4th International Conference (EMO 2007). Matshushima: Springer, LNCS, 2007, 4403: 937–951

Tavakkoli-Moghaddam R, Rahimi-Vahed A, Mirzaei A H. A hybrid multi-objective immune algorithm for a flow shop scheduling problem with bi-objectives: weighted mean completion time and weighted mean tardiness. Information Sciences, 2007, 177(22): 5072–5090

Tavakkoli-Moghaddam R, Rahimi-Vahed A, Mirzaei A H. Solving a multi-objective no-wait flow shop scheduling problem with an immune algorithm. International Journal of Advanced Manufacturing Technology, 2008, 36(9–10): 969–981

Zhang X R, Lu B, Gou S, Jiao L. Immune multiobjective optimization algorithm using unsupervised feature selection. In Rothlauf F, et al, eds. Applications of Evolutionary Computing. EvoWorkshops 2006: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoINTERACTION, EvoMUSART, and EvoSTOC. Budapest: Springers, LNCS, 2006, 3907: 484–494

Colorni A, Dorigo M, Maniezzo V. Distributed optimization by ant colonies. In: Varela F J, Bourgine P, eds. Proceedings of the First European Conference on Artificial Life. Cambridge: MIT Press, 1992, 134–142

Dorigo M, Di Caro G. The ant colony optimization meta-heuristic. In: Corne D, Dorigo M, Glover F, eds. New Ideas in Optimization. London: McGraw-Hill, 1999, 11–32

Bonabeau E, Dorigo M, Theraulaz G. Swarm Intelligence: From Natural to Artificial Systems. New York: Oxford University Press, 1999

Dorigo M, Stützle T. Ant Colony Optimization. Cambridge: The MIT Press, 2004

Mariano-Romero C E, Morales-Manzanares E. MOAQ an ant-Q algorithm for multiple objective optimization problems. In: Banzhaf W, Daida J, Eiben A E, Garzon M H, Honavar V, Jakiela M, Smith R E, eds. Proceedings of Genetic and Evolutionary Computing Conference (GECCO 99). San Francisco: Morgan Kaufmann, 1999, 1: 894–901

Iredi S, Merkle D, Middendorf M. Bi-criterion optimization with multi colony ant algorithms. In: Zitzler E, Deb K, Thiele L, Coello Coello C A, Corne D, eds. Proceedings of First International Conference on Evolutionary Multi-Criterion Optimization. Berlin: Springer-Verlag, LNCS, 2001, 1993: 359–372

Barán B, Schaerer M. A multiobjective ant colony system for vehicle routing problem with time windows. In: Proceedings of the 21st IASTED International Conference on Applied Informatics. Innsbruck: IASTED, 2003, 97–102

Guntsch M, Middendorf M. Solving multi-criteria optimization problems with population-based ACO. In: Fonseca C M, Fleming P J, Zitzler E, Deb K, Thiele L, eds. Proceedings of Evolutionary Multi-Criterion Optimization, Second International Conference (EMO 2003). Faro: Springer, LNCS, 2003, 2632: 464–478

Doerner K, Gutjahr W J, Hartl R F, Strauss C, Stummer C. Pareto ant colony optimization: a metaheuristic approach to multiobjective portfolio selection. Annals of Operations Research, 2004, 131(1–4): 79–99

Doerner K F, Gutjahr W J, Hartl R F, Strauss C, Stummer C. Pareto ant colony optimization with ILP preprocessing in multiobjective portfolio selection. European Journal of Operational Research, 2006, 171(3): 830–841

García-Martínez C, Cordón O, Herrera F. A taxonomy and an empirical analysis of multiple objective ant colony optimization algorithms for the bi-criteria TSP. European Journal of Operational Research, 2007, 180(1): 116–148

Ehrgott M, Gandibleu X X. Multiobjective combinatorial optimization—theory, methodology, and applications. In: Ehrgott E, Gandibleux X, eds. Multiple Criteria Optimization: State of the Art Annotated Bibliographic Surveys. Boston: Kluwer Academic Publishers, 2002, 369–444

Gandibleu X X, Ehrgott M. 1984–2004 — 20 years of multiobjective metaheuristics. But what about the solution of combinatorial problems with multiple objectives? In: Coello Coello C A, Hernández-Aguirre A, Zitzler E, eds. Proceedings of Evolutionary Multi-Criterion Optimization, Third International Conference (EMO 2005). Guanajuato: Springer, LNCS, 2005, 3410: 33–46

Kennedy J, Eberhart R C. Particle swarm optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks. Piscataway: IEEE Service Center, 1995, 1942–1948

Kennedy J, Eberhart R C. Swarm Intelligence. San Francisco: Morgan Kaufmann Publishers, 2001

Eberhart R C, Shi Y. Comparison between genetic algorithms and particle swarm optimization. In: Porto V W, Saravanan N, Waagen D, Eibe A E, eds. Proceedings of the Seventh Annual Conference on Evolutionary Programming. Berlin: Springer-Verlag, 1998, 611–619

Kennedy J, Eberhart R C. A discrete binary version of the particle swarm algorithm. In: Proceedings of the 1997 IEEE Conference on Systems, Man, and Cybernetics. Piscataway: IEEE Service Center, 1997, 4104–4109

Engelbrecht A P. Computational Intelligence: An Introduction. Chichester: John Wiley & Sons, 2003

Engelbrecht A P. Fundamentals of Computational Swarm Intelligence. West Sussex: John Wiley & Sons, 2005

Mostaghim S, Teich J. Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO). In: Proceedings of 2003 IEEE Swarm Intelligence Symposium. Indianapolis: IEEE Service Center, 2003, 26–33

Li X D. A non-dominated sorting particle swarm optimizer for multiobjective optimization. In: Cantú-Paz E, et al, eds. Proceedings of Genetic and Evolutionary Computation—GECCO 2003, Part I. Berlin: Springer, LNCS, 2003, 2723: 37–48

Coello Coello C A, Toscano-Pulido G, Salazar Lechuga M. Handling multiple objectives with particle swarm optimization. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 256–279

Srinivasan D, Seow T H. Particle swarm inspired evolutionary algorithm (PS-EA) for multi-criteria optimization problems. In: Abraham A, Jain L, Goldberg R, eds. Evolutionary Multiobjective Optimization: Theoretical Advances And Applications. London: Springer-Verlag, 2005, 147–165

Alvarez-Benitez J E, Everson R M, Fieldsend J E. A MOPSO algorithm based exclusively on Pareto dominance concepts. In: Coello Coello C A, Hernánde-Aguirre A, Zitzler E, eds. Proceedings of Evolutionary Multi-Criterion Optimization, Third International Conference (EMO 2005). Guanajuato: Springer, LNCS, 2005, 3410: 459–473

Reyes-Sierra M, Coello Coello C A. Improving PSO-based multiobjective optimization using crowding, mutation and ε-dominance. In: Coello Coello C A, Aguirre A H, Zitzler E, eds. Proceedings of Evolutionary Multi-Criterion Optimization, Third International Conference (EMO 2005). Guanajuato: Springer, LNCS, 2005, 3410: 505–519

Reyes-Sierra M, Coello Coello C A. Multi-objective particle swarm optimizers: a survey of the state-of-the-art. International Journal of Computational Intelligence Research, 2006, 2(3): 287–308

Branke J, Mostaghim S. About selecting the personal best in multiobjective particle swarm optimization. In: Runarsson T P, Beyer H G, Burke E, Merelo-Guervós J J, Whitley L D, Yao X, eds. Proceedings of Parallel Problem Solving from Nature — PPSN IX, 9th International Conference. Reykjavik: Springer, LNCS, 2006, 4193: 523–532

Toscano-Pulido G, Coello Coello C A, Santana-Quintero L V. EMOPSO: a multi-objective particle swarm optimizer with emphasis on efficiency. In: Obayashi S, Deb K, Poloni C, Hiroyasu T, Murata T, eds. Proceedings of Evolutionary Multi-Criterion Optimization, 4th International Conference (EMO 2007). Springer, LNCS, 2007, 4403: 272–285

Glover F. Heuristics for integer programming using surrogate constraints. Decision Sciences, 1977, 8: 156–166

Glover F. Tabu search for nonlinear and parametric optimization (with links to genetic algorithms). Discrete Applied Mathematics, 1994, 49: 231–255

Laguna M, Martí R. Scatter Search: Methodology and Implementations in C. Bostion: Kluwer Academic Publishers, 2003

Marti R. Scatter search-wellsprings and challenges. European Journal of Operational Research, 2006, 169: 351–358

Romero-Zaliz R, Zwir I, Ruspini E. Generalized analysis of promoters: a method for DNA sequence description. In: Coello Coello C A, Lamont G B, eds. Applications of Multi-Objective Evolutionary Algorithms. World Scientific, 2004, 427–449

Vasconcelos J A, Maciel J H R D, Parreiras R O. Scatter search techniques applied to electromagnetic problems. IEEE Transactions on Magnetics, 2005, 41(5): 1804–1807

Beausoleil R P. “MOSS” multiobjective scatter search applied to nonlinear multiple criteria optimization. European Journal of Operational Research, 2006, 169(2): 426–44

Knowles J, Corne D. Memetic algorithms for multiobjective optimization: issues, methods and prospects. In: Hart W E, Krasnogor N, Smith J E, eds. Recent Advances in Memetic Algorithms. Heidelberg: Springer, Studies in Fuzziness and Soft Computing, 2005, 166: 313–352

Surry P D, Radcliffe N J. The COMOGA method: constrained optimisation by multiobjective genetic algorithms. Control and Cybernetics, 1997, 26(3): 391–412

Hernández-Aguirre A, Botello-Rionda S, Lizárraga-Lizárraga G, Coello Coello C A. IS-PAES: multiobjective optimization with efficient constraint handling. In: Burczyński T, Osyczka A, eds. IUTAM Symposium on Evolutionary Methods in Mechanics. Drodrecht/ Boston/London: Kluwer Academic Publishers, 2004, 111–120

Wang Y, Cai Z X. A constrained optimization evolutionary algorithm based on multiobjective optimization techniques. In: Proceeding of 2005 IEEE Congress on Evolutionary Computation (CEC’2005). Edinbugh: IEEE Service Center, 2005, 2: 1081–1087

Wang J C, Terpenny J P. Interactive preference incorporation in evolutionary engineering design. In: Jin Y C, ed. Knowledge Incorporation in Evolutionary Computation. Berlin: Springer, 2005, 525–543

Mezura-Montes E, Coello Coello C A. Constrained optimization via multiobjective evolutionary algorithms. In: Knowles J, Corne D, Deb K, eds. Multi-Objective Problem Solving from Nature: From Concepts to Applications. Berlin: Springer, 2008, 53–75

Gupta H, Deb K. Handling constraints in robust multi-objective optimization, In: Proceedings of 2005 IEEE Congress on Evolutionary Computation (CEC’2005). Edinburgh: IEEE Service Center, 2005, 1: 25–32

Oyama A, Shimoyama K, Fujii K. New constraint-handling method for multi-objective and multi-constraint evolutionary optimization. Transactions of the Japan Society for Aeronautical and Space Sciences, 2007, 50(167): 56–62

Woldesembet Y G, Tessema B G, Yen G G. Constraint handling in multi-objective evolutionary optimization. In: Proceedings of 2007 IEEE Congress on Evolutionary Computation (CEC’2007). Singapore: IEEE Press, 2007, 3077–3084

Harada K, Sakum A J, Ono I, Kobayashi S. Constraint-handling method for multi-objective function optimization: Pareto descent repair operator. In: Obayashi S, Deb K, Poloni C, Hiroyasu T, Murata T, eds. Proceedings of Evolutionary Multi-Criterion Optimization, 4th International Conference (EMO 2007). Matshushima: Springer, LNCS, 2007, 4403: 156–170

Coello Coello C A. Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Computer Methods in Applied Mechanics and Engineering, 2002, 191(11–12): 1245–1287

Cvetković D, Parmee I C. Preferences and their application in evolutionary multiobjective optimisation. IEEE Transactions on Evolutionary Computation, 2002, 6(1): 42–57

Jin Y C, Sendhoff B. Incorporation of fuzzy preferences into evolutionary multiobjective optimization. In: Langdon W B, Cantú-Paz E, Mathias K, Roy R, Davis D, Poli R, Balakrishnan K, Honavar V, Rudolph G, Wegener J, Bull L, Potter M A, Schultz A C, Miller J F, Burke E, Jonoska N, eds. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’2002). San Francisco: Morgan Kaufmann Publishers, 2002, 683

Brank E J, Deb K. Integrating user preferences into evolutionary multiobjective optimization. In: Jin Y C, ed. Knowledge Incorporation in Evolutionary Computation. Berlin: Springer, 2005, 461–477

FigueirA J, Mousseau V, Roy B, eds. Multiple Criteria Decision Analysis: State of the Art Surveys. New York: Springer, 2005

Eiben A E, Hinterding R, Michalewicz Z. Parameter control in evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 1999, 3(2): 124–141

Eiben A E, Michalewicz Z, Schoenauer M, Smith J E. Parameter control in evolutionary algorithms. In: Lobo F G, Lima C F, Michalewicz Z, eds. Parameter Setting in Evolutionary Algorithms. Berlin: Springer-Verlag, 2007, 19–46

Meyer-Nieberg S, Beyer H G. Self-adaptation in evolutionary algorithms. In: Lobo F G, Lima C F, Michalewicz Z, eds. Parameter Setting in Evolutionary Algorithms. Berlin: Springer-Verlag, 2007, 47–75

Laumanns M, Rudolph G, Schwefel H P. Mutation control and convergence in evolutionary multi-objective optimization. In: Proceedings of the 7th International Mendel Conference on Soft Computing (MENDEL 2001). Brno: Brno University of Technology, 2001

Tan K C, Lee T H, Khor E F. Evolutionary algorithms with dynamic population size and local exploration for multiobjective optimization. IEEE Transactions on Evolutionary Computation, 2001, 5(6): 565–588

Büche D, Guidati G, Stoll P, Kourmoursakos P. Self-organizing maps for Pareto optimization of airfoils. In: Merelo Guervós J J, Adamidis P, Beyer H G, Fernández-Villacanas J L, Schwefel H P, eds. Parallel Problem Solving from Nature-PPSN VII. Granada: Springer-Verlag, LNCS, 2002, 2439: 122–131

Abbass H A. The self-adaptive Pareto differential evolution algorithm. In: Proceedings of Congress on Evolutionary Computation (CEC’2002). Piscataway: IEEE Service Center, 2002, 831–836

Zhu Z Y, Leung K S. Asynchronous self-Adjustable island genetic algorithm for multi-objective optimization problems. In: Proceedings of Congress on Evolutionary Computation (CEC’2002). Piscataway: IEEE Service Center, 2002, 1: 837–842

Deb K. Evolutionary multi-objective optimization without additional parameters. In: Lobo F G, Lima C F, Michalewicz Z, eds. Parameter Setting in Evolutionary Algorithms. Berlin: Springer-Verlag, 2007, 241–257

De Jong K. Parameter setting in EAs: a 30 year perspective. In: Lobo F G, Lima G F, Michalewicz Z, eds. Parameter Setting in Evolutionary Algorithms. Berlin: Springer-Verlag, 2007, 1–18

Toscano-Pulido G. On the use of self-adaptation and elitism for multiobjective particle swarm optimization. PhD thesis. Mexico City: CINVESTAV-IPN, 2005

Laumanns M, Thiele L, Zitzler E. Running time analysis of multiobjective evolutionary algorithms on Pseudo-Boolean functions. IEEE Transactions on Evolutionary Computation, 2004, 8(2): 170–182

Laumanns M, Thiele L, Zitzler E. Running time analysis of evolutionary algorithms on a simplified multiobjective knapsack problem. Natural Computing, 2004, 3(1): 37–51

Mostaghim S, Teich J, Tyagi A. Comparison of data structures for storing Pareto-sets in MOEAs. In: Proceedings of Congress on Evolutionary Computation (CEC’2002). Piscataway: IEEE Service Center, 2002, 1: 843–848

Habenicht W. Quad trees: a data structure for discrete vector optimization problems. Lecture Notes in Economics and Mathematical Systems, 1982, 209: 136–145

Fieldsend J E, Everson R M, Singh S. Using unconstrained elite archives for multiobjective optimization. IEEE Transactions on Evolutionary Computation, 2003, 7(3): 305–323

Schütze O. A new data structure for the nondominance problem in multi-objective optimization. In: Fonseca C M, Fleming P J, Zitzler E, Deb K, Thiele L, eds. Proceedings of Evolutionary Multi-Criterion Optimization, Second International Conference (EMO 2003). Springer, LNCS, 2003, 2632: 509–518

Laumanns M, Thiele L, Deb K, Zitzler E. On the convergence and diversity-preservation properties of multi-objective evolutionary algorithms. Technical Report 108, Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH). Zurich, 2001

Villalobos-Arias M, Coello Coello C A, Hernández-Lerma O. Asymptotic convergence of metaheuristics for multiobjective optimization problems. Soft Computing, 2006, 10(11): 1001–1005

Schuetze O, Laumanns M, Tantar E, Coello Coello C A, Talbi E G. Convergence of stochastic search algorithms to gap-free Pareto front approximations. In: Thierens D, ed. Proceedings of 2007 Genetic and Evolutionary Computation Conference (GECCO’2007). London: ACM Press, 2007, 1: 892–899