Evolutionary individual-based model for the recruitment of anchovy (Engraulis capensis) in the southern Benguela

Canadian Journal of Fisheries and Aquatic Sciences - Tập 59 Số 5 - Trang 910-922 - 2002
Christian Mullon, Philippe Cury, Pierrick Penven

Tóm tắt

Evolutionary simulations are developed to explore environmental constraints that select observed spatial and temporal spawning patterns for anchovy (Engraulis capensis) in the southern Benguela. They couple a realistic three-dimensional hydrodynamic model with an individual-based model in which an evolutionary-based reproductive strategy for adult fish and a passive transport for early life stages are implemented. The evolutionary success of spawning is quantified when patterns at the population level emerge after many generations from constraints at the individual level through a selective process. As a result, several self-sustaining populations are identified considering different sets of selective constraints. Simulated spawning patterns better match the observed mean spawning pattern when two selective environmental constraints are associated: a threshold temperature of 14°C, above which the development of early life stages is ensured, and the avoidance of offshore currents that constitute a loss of spawning products. Simulated recruitment patterns are more realistic when considering the constraint of reaching the nursery area. This modeling experience can help to identify, temporally and spatially, environmental factors important for fish recruitment and to establish a hierarchy of these factors. The probable coexistence in nature of several self-sustaining populations of pelagic fishes is shown to be important for recruitment studies.

Từ khóa


Tài liệu tham khảo

Anders A.S., 1965, S. Afr. Shipping News Fish. Ind. Rev., 20, 103

Barange M., 1999, S. Afr. J. Mar. Sci., 21, 349, 10.2989/025776199784126088

Boisclair D., 2001, Can. J. Fish. Aquat. Sci., 58, 1, 10.1139/f00-251

Cochrane K.L., 1995, Fish. Oceanogr., 4, 102, 10.1111/j.1365-2419.1995.tb00066.x

Cury P., 1994, Can. J. Fish. Aquat. Sci., 51, 1664, 10.1139/f94-167

Duncombe-Rae C.M., 1992, Edited by S.C. Pillar, C.L. Moloney, A.I.L. Payne, and F.A. Shillington. S. Afr. J. Mar. Sci., 19, 167

Frank K.T., 1994, Rev. Ecol. Syst., 25, 401, 10.1146/annurev.es.25.110194.002153

Grimm V., 1999, Ecol. Model., 115, 129, 10.1016/S0304-3800(98)00188-4

Grimm V., 1996, Total Environ., 183, 151, 10.1016/0048-9697(95)04966-5

Hermann A.J., 1996, Fish. Oceanogr., 5, 39, 10.1111/j.1365-2419.1996.tb00081.x

Hinckley S., 1996, Mar. Ecol. Prog. Ser., 139, 47, 10.3354/meps139047

Hjort J., 1914, Réun. Cons. Perm. Int. Explor. Mer, 20, 1

Huggett J.A., 1998, Shillington. S. Afr. J. Mar. Sci., 19, 197, 10.2989/025776198784126773

Hutchings L., 1992, Hilborn. S. Afr. J. Mar. Sci., 12, 297, 10.2989/02577619209504708

Hutchings L., 1998, Shillington. S. Afr. J. Mar. Sci., 19, 211, 10.2989/025776198784126908

King D.P.F., 1978, Fish. Bull. S. Afr., 10, 37

Le Page C., 1997, Can. J. Fish. Aquat. Sci., 54, 2235, 10.1139/f97-132

Lewontin R.C., 1983, Scientia, 118, 65

Marchesiello P., 2001, Ocean Model., 3, 1, 10.1016/S1463-5003(00)00013-5

Mitchell M., 1999, Rev. Ecol. Syst., 20, 593, 10.1146/annurev.ecolsys.30.1.593

Myers R.A., 1998, Rev. Fish Biol. Fish., 8, 285, 10.1023/A:1008828730759

Page F.H., 1999, Fish. Oceanogr., 8, 212, 10.1046/j.1365-2419.1999.00108.x

Penven P., 2001, Geophys. Res. Lett., 28, 1055, 10.1029/2000GL011760

Penven P., 2001, S. Afr. J. Sci., 97, 472

Richardson A.J., 1998, Shillington. S. Afr. J. Mar. Sci., 19, 275, 10.2989/025776198784126755

Rose K.A., 1999, Mar. Ecol. Prog. Ser., 185, 113, 10.3354/meps185113

Roy C., 1992, Hilborn. S. Afr. J. Mar. Sci., 12, 135, 10.2989/02577619209504697

Shannon L., 1998, Shillington. S. Afr. J. Mar. Sci., 19, 291, 10.2989/025776198784126638

Shannon L.V., 1992, Hilborn. S. Afr. J. Mar. Sci., 12, 271, 10.2989/02577619209504707

Slobodkin L.B., 1999, Oceanography, 12, 9