Evolutionary history of interactions among terrestrial arthropods

Current Opinion in Insect Science - Tập 51 - Trang 100915 - 2022
David A Grimaldi1
1Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, USA

Tài liệu tham khảo

Labandeira, 2021, The history of insect parasitism and the Mid-Mesozoic Parasitoid Revolution, 49 Grimaldi, 2016, The Mesozoic family eremochaetidae (Diptera: Brachycera) in Burmese amber and relationships of the Archisargoidea, Amer Mus Novit, 3865, 1, 10.1206/3865.1 Robin, 2019, Fossil amber reveals springtails’ longstanding dispersal by social insects, BMC Evol Biol, 19, 1, 10.1186/s12862-019-1529-6 Robin, 2016, A Carboniferous mite on an insect reveals the antiquity of an inconspicuous interaction, Curr Biol, 26, 1376, 10.1016/j.cub.2016.03.068 Pohl, 2001, First record of a female stylopid (Strepsiptera:? Myrmecolacidae) parasite of a prionomyrmecine ant (Hymenoptera: Formicidae) in Baltic amber, Insect Syst Evol, 32, 143, 10.1163/187631201X00092 Barden, 2020, Specialized predation drives aberrant morphological integration and diversity in the earliest ants, Curr Biol, 30, 3818, 10.1016/j.cub.2020.06.106 Peñalver, 2006, Early Cretaceous spider web with its prey, Science, 312, 1761, 10.1126/science.1126628 van de Kamp, 2018, Parasitoid biology preserved in mineralized fossils, Nature Comm, 9, 1, 10.1038/s41467-018-05654-y Wiens, 2004, The role of morphological data in phylogeny reconstruction, Syst Biol, 53, 653, 10.1080/10635150490472959 Zherikhin, 2000, A review of the history, geology and age of Burmese amber (burmite), Bull Nat Hist Mus Geol Series, 56, 3 Grimaldi, 2002, Fossiliferous Cretaceous amber from Burma (Myanmar): its rediscovery, biotic diversity, and paleontological significance, Amer Mus Novit, 3361, 1, 10.1206/0003-0082(2002)361<0001:FCAFMB>2.0.CO;2 Grimaldi, 2017, Extraordinary Lagerstätten in amber, with particular reference to the Cretaceous of Burma, 287 Shi, 2012, Age constraint on Burmese amber based on U-Pb dating of zircons, Cret Res, 37, 155, 10.1016/j.cretres.2012.03.014 Azar, 2010, Lebanese amber, 271 Schmidt, 2012, Arthropods in amber from the Triassic Period, Proc Natl Acad Sci U S A, 109, 14796, 10.1073/pnas.1208464109 Grimaldi, 2005, 755 Qvarnström, 2021, Exceptionally preserved beetles in a Triassic coprolite of putative dinosauriform origin, Curr Biol, 31, 3374, 10.1016/j.cub.2021.05.015 Withers, 2020, Primer methods: X-ray computed tomography (CT), Nat Rev Methods Primers, 1, 18, 10.1038/s43586-021-00015-4 Soriano, 2010, Synchrotron X-ray imaging of inclusions in amber, Compt Rend Palevol, 9, 361, 10.1016/j.crpv.2010.07.014 Misof, 2014, Phylogenomics resolves the timing and pattern of insect evolution, Science, 346, 763, 10.1126/science.1257570 Dunlop, 2010, Geological history and phylogeny of Chelicerata, Arthropod Struct Dev, 39, 124, 10.1016/j.asd.2010.01.003 Howard, 2020, Lozano-Fernandez: arachnid monophyly: morphological, paleontological and molecular support for a single terrestrialization within Chelicerata, Arthropod Struct Dev, 59, 10.1016/j.asd.2020.100997 Magalhaes, 2020, The fossil record of spiders revisited: implications for calibrating trees and evidence for a major faunal turnover since the Mesozoic, Biol Rev, 95, 184, 10.1111/brv.12559 Shear, 1989, A Devonian spinneret: early evidence of spiders and silk use, Science, 246, 479, 10.1126/science.246.4929.479 Hrcek, 2013, Parasitism rate, parasitoid community composition and host specificity on exposed and semi-concealed caterpillars from a tropical rainforest, Oecologia, 173, 521, 10.1007/s00442-013-2619-6 Stireman, 2003, Determinants of parasitoid–host associations: insights from a natural tachinid–lepidopteran community, Ecology, 84, 296, 10.1890/0012-9658(2003)084[0296:DOPHAI]2.0.CO;2 McKenna, 2019, The evolution and genomic basis of beetle diversity, Proc Natl Acad Sci USA, 116, 24729, 10.1073/pnas.1909655116 Pohl, 2021, On the value of Burmese amber for understanding insect evolution: insights from †Heterobathmilla – an exceptional stem group genus of Strepsiptera (Insecta), Cladistics, 37, 211, 10.1111/cla.12433 Peters, 2018, Transcriptome sequence-based phylogeny of chalcidoid wasps (Hymenoptera: Chalcidoidea) reveals a history of rapid radiations, convergence, and evolutionary success, Mol Phylog Evol, 120, 286, 10.1016/j.ympev.2017.12.005 Wiegmann, 2011, Episodic radiations in the fly tree of life, Proc Natl Acad Sci U S A, 108, 5690, 10.1073/pnas.1012675108 Li, 2021, Phylogenomics reveals accelerated late Cretaceous diversification of bee flies (Diptera: Bombyliidae), Cladistics, 37, 276, 10.1111/cla.12436 Gillung, 2018, Anchored phylogenomics unravels the evolution of spider flies (Diptera: Acroceridae) and reveals discordance between nucleotides and amino acids, Mol Phylog Evol, 128, 233, 10.1016/j.ympev.2018.08.007 Grimaldi, 2016, Diverse orthorrhaphan flies (Insecta: Diptera: Brachycera) in amber from the Cretaceous of Myanmar. Brachycera in Cretaceous amber, part VII, Bull Am Mus Nat Hist, 408, 131, 10.1206/0003-0090-408.1.1 Peters, 2017, Evolutionary history of the Hymenoptera, Curr Biol, 27, 1013, 10.1016/j.cub.2017.01.027 2002, 517 Oyama, 2020, Madygella humioi sp. nov. from the Upper Triassic Mine Group, southwest Japan: the oldest record of a sawfly (Hymenoptera: Symphyta) in East Asia, Paleont Res, 24, 64, 10.2517/2019PR005 Bartlow, 2021, Phoresy in animals: review and synthesis of a common but understudied mode of dispersal, Biol Rev, 96, 223, 10.1111/brv.12654 Norton, 1988, Oribatid mite fossils from a terrestrial Devonian deposit near Gilboa, New York, J Paleontol, 62, 259, 10.1017/S0022336000029905 Wilson, 1971 Rettenmeyer, 2011, The largest animal association centered on one species: the army ant Eciton burchellii and its more than 300 associates, Insectes Soc, 58, 281, 10.1007/s00040-010-0128-8 Parker, 2016, Myrmecophily in beetles (Coleoptera): evolutionary patterns and biological mechanisms, Myrmecol News, 22, 65 Parmentier, 2020, Guests of social insects Disney, 1994 LaPolla, 2013, Ants and the fossil record, Ann Rev Entomol, 58, 609, 10.1146/annurev-ento-120710-100600 Barden, 2017, Fossil ants (Hymenoptera: Formicidae): ancient diversity and the rise of modern lineages, Myrmecol News, 24, 1 Barden, 2016, Adaptive radiation in socially advanced stem-group ants from the Cretaceous, Curr Biol, 26, 515, 10.1016/j.cub.2015.12.060 Engel, 2016, Morphologically specialized termite castes and advanced sociality in the Early Cretaceous, Curr Biol, 26, 522, 10.1016/j.cub.2015.12.061 Zhao, 2020, Termite communities and their early evolution and ecology trapped in Cretaceous amber, Cretac Res, 117 Grimaldi, 2000, A formicine in Cretaceous amber (Hymenoptera: Formicidae) and early evolution of the ants, Proc Natl Acad Sci U S A, 97, 13678, 10.1073/pnas.240452097 Engel, 2009, Termites: their phylogeny and rise to ecological dominance, Am Mus Novit, 3650, 1 Cai, 2017, Early evolution of specialized termitophily in Cretaceous rove beetles, Curr Biol, 27, 1229, 10.1016/j.cub.2017.03.009 Yamamoto, 2016, Evidence for social parasitism of early insect societies by Cretaceous rove beetles, Nat Commun, 7, 1, 10.1038/ncomms13658 Zhou, 2019, A Mesozoic clown beetle myrmecophile (Coleoptera: Histeridae), Elife, 8, 10.7554/eLife.44985 Chatzimanolis, 2018, A review of the fossil record of Staphylinoidea, 27 Parker, 2016, Emergence of a superradiation: pselaphine rove beetles in mid‐Cretaceous amber from Myanmar and their evolutionary implications, Syst Entomol, 41, 541, 10.1111/syen.12173 Grimaldi, 2018, Basal Cyclorrhapha in amber from the Cretaceous and Tertiary (Diptera: Brachycera), and their relationships. Brachycera in Cretaceous Amber Part IX, Bull Am Mus Nat Hist, 423, 97, 10.1206/0003-0090-423.1.1 Brown, 2017, Fossil evidence of social insect commensalism in the Phoridae (Insecta: Diptera), J Syst Palaeontol, 15, 275, 10.1080/14772019.2016.1172676 Grimaldi, 2019, Eudicot-pollen feeding in a Cretaceous stinging wasp (Angiospermae; Hymenoptera: Aculeata), Commun Biol, 408, 1 Vea, 2016, Putting scales into evolutionary time: the divergence of major scale insect lineages (Insecta: Hemiptera: Coccoidea) predates the radiation of modern angiosperm hosts, Sci Rep, 6, 1, 10.1038/srep23487 Grimaldi, 2018, Biological inclusions in amber from the Paleogene Chickaloon Formation of Alaska, Am Mus Novit, 3908, 1, 10.1206/3908.1 Rust, 2010, Biogeographic and evolutionary implications of a diverse paleobiota in amber from the early Eocene of India, Proc Natl Acad Sci, 107, 18360, 10.1073/pnas.1007407107 Schmidt, 2018, Amber inclusions from New Zealand, Gondwana Res, 56, 135, 10.1016/j.gr.2017.12.003 Zheng, 2018, A Late Cretaceous amber biota from central Myanmar, Nat Commun, 9, 1, 10.1038/s41467-018-05650-2 Wang, 2021, The mid-Miocene Zhangpu biota reveals an outstandingly rich rainforest biome in East Asia, Sci Adv, 7 Brady, 2006, Evaluating alternative hypotheses for the early evolution and diversification of ants, Proc Natl Acad Sci, 103, 18172, 10.1073/pnas.0605858103 Moreau, 2006, Phylogeny of the ants: diversification in the age of angiosperms, Science, 312, 101, 10.1126/science.1124891 Moreau, 2013, Testing the museum versus cradle tropical biological diversity hypothesis: phylogeny, diversification, and ancestral biogeographic range evolution of the ants, Evolution, 67, 2240, 10.1111/evo.12105 Wilson, 2013, Family-level divergences in the stinging wasps (Hymenoptera: Aculeata), with correlations to angiosperm diversification, Evol Biol, 40, 101, 10.1007/s11692-012-9189-0 Ward, 2015, The evolution of myrmicine ants: phylogeny and biogeography of a hyperdiverse ant clade (Hymenoptera: Formicidae), Syst Entomol, 40, 61, 10.1111/syen.12090 Perrard, 2017, Early lineages of Vespidae (Hymenoptera) in Cretaceous amber, Syst Entomol, 42, 379, 10.1111/syen.12222 Huang, 2019, The first divergence time estimation of the subfamily Stenogastrinae (Hymenoptera: Vespidae) based on mitochondrial phylogenomics, Int J Biol Macromol, 137, 767, 10.1016/j.ijbiomac.2019.06.239 Engel, 2001, Monograph on the Baltic amber bees, and evolution of the Apoidea, Bull Am Mus Nat Hist, 250, 1, 10.1206/0003-0090(2000)250<0001:COTBTA>2.0.CO;2 Cardinal, 2013, Bees diversified in the age of eudicots, Proc R Soc B, 280 Brady, 2009, Bees, ants, and stinging wasps (Aculeata), 264 Ware, 2010, The effects of fossil placement and calibration on divergence times and rates: an example from the termites (Insecta: Isoptera), Arthropod Struct Dev, 39, 204, 10.1016/j.asd.2009.11.003 Legendre, 2015, Phylogeny of Dictyoptera: dating the origin of cockroaches, praying mantises and termites with molecular data and controlled fossil evidence, PLoS One, 10, 10.1371/journal.pone.0130127 Evangelista, 2019, An integrative phylogenomic approach illuminates the evolutionary history of cockroaches and termites (Blattodea), Proc R Soc B, 286, 10.1098/rspb.2018.2076