Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Sự phát triển của cấu trúc tinh thể, vi cấu trúc và tính chất từ tính của hợp kim Permimphy sau quá trình cán cuộn tích lũy và tôi luyện
Tóm tắt
Vật liệu từ mềm (SMMs) được sử dụng rộng rãi trong nhiều lĩnh vực như phát điện, chuyển giao năng lượng và giảm thiểu nhiễu điện từ. Việc chế tạo SMMs ở các dạng khác nhau yêu cầu chuyên môn trong các kỹ thuật chế tạo đa dạng. Hơn nữa, để đạt được hiệu suất tối ưu, cần phải hiểu mối quan hệ giữa hành vi từ tính và vi cấu trúc cũng như các tính chất cơ học của SMMs. Nghiên cứu này tập trung vào phân tích ảnh hưởng của quá trình cán cuộn tích lũy (ARB) lên kết cấu, vi cấu trúc và các tính chất từ tính của hợp kim Permimphy thương mại (Fe–80Ni–5Mo wt%). Phân tích tán xạ điện tử ngược (EBSD) đã xác nhận sự tinh chỉnh dự kiến của cấu trúc hạt do quá trình ARB, dẫn đến sự giảm kích thước ngang của các hạt kéo dài xuống còn 800 nm sau năm chu trình. Độ cứng vi mô của hợp kim tăng 80% so với mẫu ban đầu, chủ yếu là do sự tinh chỉnh của vi cấu trúc và sự hình thành mật độ cao của các khuyết tật. Các phát hiện cho thấy rằng các bức tường miền từ tính bị ảnh hưởng nhiều hơn bởi các biên giới góc thấp hơn là các biên/hạt góc cao. Ngoài ra, đã chứng minh rằng việc tôi luyện tiếp theo ở 550 °C trong một giờ đã cải thiện độ từ mềm của hợp kim trong khi vẫn duy trì độ cứng cơ học đạt được thông qua biến dạng ARB. Sự cải thiện này chủ yếu được quy cho việc loại bỏ các căng thẳng và khuyết tật trong vật liệu mà không khởi đầu quá trình kết tinh lại.
Từ khóa
#Vật liệu từ mềm #cán cuộn tích lũy #hợp kim Permimphy #tính chất vi cấu trúc #phân tích EBSDTài liệu tham khảo
Ouyang G, Chen X, Liang Y et al (2019) Review of Fe–6.5 wt%Si high silicon steel—a promising soft magnetic material for sub-kHz application. J Magn Magn Mater 481:234–250. https://doi.org/10.1016/j.jmmm.2019.02.089
Cullity BD, Graham CD (2011) Introduction to magnetic materials. Wiley
Tsuji N, Takebayashi H, Takiguchi T et al (1995) Recrystallization of solidified columnar crystals in an Fe–36%Ni austenitic alloy. Acta Metall Mater 43:755–768. https://doi.org/10.1016/0956-7151(94)00263-H
Tsuji N, Takebayashi H, Takiguchi T et al (1995) Effect of initial orientation on the cold-rolling behavior of solidified columnar crystals in an Fe–36%Ni austenitic alloy. Acta Metall Mater 43:743–754. https://doi.org/10.1016/0956-7151(94)00264-I
Tsuji N, Ito Y, Saito Y, Minamino Y (2002) Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing. Scr Mater 47:893–899. https://doi.org/10.1016/S1359-6462(02)00282-8
Ghalehbandi SM, Malaki M, Gupta M (2019) Accumulative roll bonding—a review. Appl Sci 9:3627. https://doi.org/10.3390/app9173627
Langdon TG (2007) Ultrafine-grained materials: a personal perspective. Int J Mater Res 98:251–254. https://doi.org/10.3139/146.101473
Pfeifer F, Radeloff C (1980) Soft magnetic Ni–Fe and Co–Fe alloys—some physical and metallurgical aspects. J Magn Magn Mater 19:190–207. https://doi.org/10.1016/0304-8853(80)90592-2
Boothby OL, Bozorth RM (1947) A new magnetic material of high permeability. J Appl Phys 18:173–176. https://doi.org/10.1063/1.1697599
Bozorth RM (1953) The permalloy problem. Rev Mod Phys 25:42–48. https://doi.org/10.1103/RevModPhys.25.42
Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci 45:103–189
Zhilyaev AP, Langdon TG (2008) Using high-pressure torsion for metal processing: fundamentals and applications. Prog Mater Sci 53:893–979. https://doi.org/10.1016/j.pmatsci.2008.03.002
Lenard JG (2013) Primer on flat rolling. Newnes
Huang JY, Zhu YT, Jiang H, Lowe TC (2001) Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening. Acta Mater 49:1497–1505. https://doi.org/10.1016/S1359-6454(01)00069-6
Saito Y, Tsuji N, Utsunomiya H et al (1998) Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process. Scr Mater 39:1221–1227. https://doi.org/10.1016/S1359-6462(98)00302-9
Tirsatine K, Azzeddine H, Baudin T et al (2014) Texture and microstructure evolution of Fe–Ni alloy after accumulative roll bonding. J Alloys Compd 610:352–360. https://doi.org/10.1016/j.jallcom.2014.04.173
Han L, Maccari F, Souza Filho IR et al (2022) A mechanically strong and ductile soft magnet with extremely low coercivity. Nature 608:310–316. https://doi.org/10.1038/s41586-022-04935-3
Vorhauer A, Rumpf K, Granitzer P et al (2006) Magnetic properties and microstructure of a FeCo ferritic steel after severe plastic deformation. Mater Sci Forum 503–504:299–304. https://doi.org/10.4028/www.scientific.net/MSF.503-504.299
Susan DF, Kustas AB, Kellogg RA et al (2021) The effects of annealing after equal channel angular extrusion (ECAE) on mechanical and magnetic properties of 49Fe–49Co–2V alloy. Metall Mater Trans A 52:4090–4099. https://doi.org/10.1007/s11661-021-06366-7
Stolyarov VV, Gunderov DV, Valiev RZ et al (1999) Metastable states in R2Fe14B-based alloys processed by severe plastic deformation. J Magn Magn Mater 196–197:166–168. https://doi.org/10.1016/S0304-8853(98)00705-7
Popov AG, Gaviko VS, Shchegoleva NN et al (2006) Effect of high-pressure torsion deformation and subsequent annealing on structure and magnetic properties of overquenched melt-spun Nd9Fe85B6 alloy. J Iron Steel Res Int 13:160–165. https://doi.org/10.1016/S1006-706X(08)60175-2
Bachmann F, Hielscher R, Schaeben H (2010) Texture analysis with MTEX – free and open source software toolbox. Solid State Phenom 160:63–68. https://doi.org/10.4028/www.scientific.net/SSP.160.63
Williamson GK, Hall WH (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metall 1:22–31. https://doi.org/10.1016/0001-6160(53)90006-6
Roghani H, Borhani E, Shams SAA et al (2022) Effect of concurrent accumulative roll bonding (ARB) process and various heat treatment on the microstructure, texture and mechanical properties of AA1050 sheets. J Mater Res Technol 18:1295–1306. https://doi.org/10.1016/j.jmrt.2022.03.001
Li BL, Tsuji N, Kamikawa N (2006) Microstructure homogeneity in various metallic materials heavily deformed by accumulative roll-bonding. Mater Sci Eng A 423:331–342. https://doi.org/10.1016/j.msea.2006.02.028
Son H-W, Cho C-H, Lee J-C et al (2020) Deformation banding and static recrystallization in high-strain-rate-torsioned Al–Mg alloy. J Alloys Compd 814:152311. https://doi.org/10.1016/j.jallcom.2019.152311
Changizian P, Zarei-Hanzaki A, Ghambari M, Imandoust A (2013) Flow localization during severe plastic deformation of AZ81 magnesium alloy: micro-shear banding phenomenon. Mater Sci Eng A 582:8–14. https://doi.org/10.1016/j.msea.2013.05.069
Wang B, Zhao H, Shan X et al (2023) Hot deformation behavior and dynamic recrystallization mechanism of Ti2ZrTa0.75 refractory complex concentrated alloy. Mater Charact 203:113061. https://doi.org/10.1016/j.matchar.2023.113061
Wang J, Cheng S, Wu Y et al (2023) Effect of cold rolling on microstructure, texture, and tensile properties of a Ni–Fe-based superalloy. J Alloys Compd 937:168383. https://doi.org/10.1016/j.jallcom.2022.168383
Tsuji N, Saito Y, Lee S-H, Minamino Y (2003) ARB (accumulative roll-bonding) and other new techniques to produce bulk ultrafine grained materials. Adv Eng Mater 5:338–344. https://doi.org/10.1002/adem.200310077
Kamikawa N, Tsuji N, Minamino Y (2004) Microstructure and texture through thickness of ultralow carbon IF steel sheet severely deformed by accumulative roll-bonding. Sci Technol Adv Mater 5:163. https://doi.org/10.1016/j.stam.2003.10.018
Abib K, Balanos JAM, Alili B, Bradai D (2016) On the microstructure and texture of Cu–Cr–Zr alloy after severe plastic deformation by ECAP. Mater Charact 112:252–258. https://doi.org/10.1016/j.matchar.2015.12.026
Khereddine AY, Hadj Larbi F, Azzeddine H et al (2013) Microstructures and textures of a Cu–Ni–Si alloy processed by high-pressure torsion. J Alloys Compd 574:361–367. https://doi.org/10.1016/j.jallcom.2013.05.051
Tsuji N (2009) Fabrication of bulk nanostructured materials by accumulative roll bonding (ARB). Bulk nanostructured materials. Wiley, NY, pp 235–253
Humphreys FJ, Hatherly M (2012) Recrystallization and related annealing phenomena. Elsevier
Takata N, Yamada K, Ikeda K et al (2006) Annealing behavior and recrystallized texture in ARB processed copper. Mater Sci Forum 503–504:919–924. https://doi.org/10.4028/www.scientific.net/MSF.503-504.919
Pasebani S, Toroghinejad MR, Hosseini M, Szpunar J (2010) Textural evolution of nano-grained 70/30 brass produced by accumulative roll-bonding. Mater Sci Eng A 527:2050–2056. https://doi.org/10.1016/j.msea.2010.01.005
Schramm RE, Reed RP (1976) Stacking fault energies of fcc fe-Ni alloys by x-ray diffraction line profile analysis. Metall Trans A 7:359–363. https://doi.org/10.1007/BF02642831
Jamaati R, Toroghinejad MR (2014) Effect of alloy composition, stacking fault energy, second phase particles, initial thickness, and measurement position on deformation texture development of nanostructured FCC materials fabricated via accumulative roll bonding process. Mater Sci Eng A 598:77–97. https://doi.org/10.1016/j.msea.2014.01.020
Boudekhani-Abbas S, Tirsatine K, Azzeddine H et al (2018) Texture, microstructure and mechanical properties evolution in Fe-x (x = 36 and 48 wt%) Ni alloy after accumulative roll bonding. IOP Conf Ser Mater Sci Eng 375:012034. https://doi.org/10.1088/1757-899X/375/1/012034
Pirgazi H, Akbarzadeh A, Petrov R et al (2008) Texture evolution of AA3003 aluminum alloy sheet produced by accumulative roll bonding. Mater Sci Eng A 492:110–117. https://doi.org/10.1016/j.msea.2008.03.005
Hidalgo-Manrique P, Cepeda-Jiménez CM, Ruano OA, Carreño F (2012) Effect of warm accumulative roll bonding on the evolution of microstructure, texture and creep properties in the 7075 aluminium alloy. Mater Sci Eng A 556:287–294. https://doi.org/10.1016/j.msea.2012.06.089
Jiang L, Pérez-Prado MT, Gruber PA et al (2008) Texture, microstructure and mechanical properties of equiaxed ultrafine-grained Zr fabricated by accumulative roll bonding. Acta Mater 56:1228–1242. https://doi.org/10.1016/j.actamat.2007.11.017
Jamaati R, Toroghinejad MR (2014) Effect of stacking fault energy on deformation texture development of nanostructured materials produced by the ARB process. Mater Sci Eng A 598:263–276. https://doi.org/10.1016/j.msea.2014.01.048
Zaefferer S, Baudin T, Penelle R (2001) A study on the formation mechanisms of the cube recrystallization texture in cold rolled Fe–36%Ni alloys. Acta Mater 49:1105–1122. https://doi.org/10.1016/S1359-6454(00)00387-6
Dieter GE, Bacon D (1976) Mechanical metallurgy. McGraw-hill, New York
Heason CP, Prangnell PB (2002) Texture evolution and grain refinement in Al deformed to ultra-high strains by accumulative roll bonding (ARB). Mater Sci Forum 408–412:733–738. https://doi.org/10.4028/www.scientific.net/MSF.408-412.733
Azzeddine H, Tirsatine K, Baudin T et al (2017) On the stored energy evolution after accumulative roll-bonding of invar alloy. Mater Chem Phys 201:408–415. https://doi.org/10.1016/j.matchemphys.2017.08.063
Shamsujjoha M (2020) Evolution of microstructures, dislocation density and arrangement during deformation of low carbon lath martensitic steels. Mater Sci Eng A 776:139039. https://doi.org/10.1016/j.msea.2020.139039
Muñoz JA, Higuera OF, Benito JA et al (2019) Analysis of the micro and substructural evolution during severe plastic deformation of ARMCO iron and consequences in mechanical properties. Mater Sci Eng A 740–741:108–120. https://doi.org/10.1016/j.msea.2018.10.100
Miyajima Y, Okubo S, Abe H et al (2015) Dislocation density of pure copper processed by accumulative roll bonding and equal-channel angular pressing. Mater Charact 104:101–106. https://doi.org/10.1016/j.matchar.2015.04.009
Estrin Y, Tóth LS, Molinari A, Bréchet Y (1998) A dislocation-based model for all hardening stages in large strain deformation. Acta Mater 46:5509–5522. https://doi.org/10.1016/S1359-6454(98)00196-7
Haas L (1995) Reprints available directly from the publisher photocopying permitted by license only. Rev Educ Pedagogy Cult Stud 17:1–6. https://doi.org/10.1080/1071441950170102
Rollett AD, Storch ML, Hilinski EJ, Goodman SR (2001) Approach to saturation in textured soft magnetic materials. Metall Mater Trans A 32:2595–2603. https://doi.org/10.1007/s11661-001-0049-2
Waeckerlé T, Demier A, Godard F, Fraisse H (2020) Evolution and recent developments of 80%Ni permalloys. J Magn Magn Mater 505:166635. https://doi.org/10.1016/j.jmmm.2020.166635
Kustas AB, Michael JR, Susan DF et al (2018) Equal channel angular extrusion for bulk processing of Fe–Co–2V soft magnetic alloys, part II: texture analysis and magnetic properties. J Mater Res 33:2176–2188. https://doi.org/10.1557/jmr.2018.150