Evolution of the pseudogap from Fermi arcs to the nodal liquid

Nature Physics - Tập 2 Số 7 - Trang 447-451 - 2006
Amit Kanigel1,2, M. R. Norman3, Mohit Randeria4, U. K. Chatterjee1,2, S. Souma5, Adam Kaminski6, H. M. Fretwell6, Stephan Rosenkranz3, M. Shi1,7, T. Sato8, T. Takahashi8, Z. Z. Li9, H. Raffy9, Kazuo Kadowaki10, D. G. Hinks3, L. Ozyuzer3, J. C. Campuzano1,2
1Department of Physics, University of Illinois at Chicago, Chicago, Illinois, USA
2Materials Science Division, Argonne National Laboratory, Argonne, Illinois USA
3Argonne National Laboratory
4Department of Physics, Ohio State University, Columbus, Ohio, USA
5University of Illinois at Chicago
6Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, Iowa, USA
7Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
8Dept. of Physics, Tohoku Univ., Sendai, Japan
9Laboratorie de Physique des Solides, Universite Paris-Sud, Orsay Cedex, France
10University of Tsukuba

Tóm tắt

Từ khóa


Tài liệu tham khảo

Timusk, T. & Statt, B. The pseudogap in high-temperature superconductors: An experimental survey. Rep. Prog. Phys. 62, 61–122 (1999).

Ding, H. et al. Spectroscopic evidence for a pseudogap in the normal state of underdoped high-Tc superconductors. Nature 382, 51–54 (1996).

Loeser, A. G. et al. Excitation gap in the normal state of underdoped Bi2Sr2CaCu2O8+δ . Science 273, 325–329 (1996).

Norman, M. R. et al. Destruction of the Fermi surface in underdoped high-Tc superconductors. Nature 392, 157–160 (1998).

Randeria, M. in Proc. Int. School of Physics ‘Enrico Fermi’ on Conventional and High Temperature Superconductors (eds Iadonisi, G., Schrieffer, J. R. & Chiafalo, M. L.) 53–75 (IOS Press, Amsterdam, 1998).

Norman, M. R., Pines, D. & Kallin, C. The pseudogap: friend or foe of high Tc? Adv. Phys. 54, 715–733 (2005).

Norman, M. R., Randeria, M., Ding, H. & Campuzano, J. C. Phenomenology of the low-energy spectral function in high-Tc superconductors. Phys. Rev. B 57, R11093–R11096 (1998).

Ozyuzer, L. et al. Probing the phase diagram of Bi2Sr2CaCu2O8+δ with tunneling spectroscopy. IEEE Trans. Appl. Supercond. 13, 893–896 (2003).

Norman, M. R., Randeria, M., Ding, H. & Campuzano, J. C. Phenomenological models for the gap anisotropy of Bi2Sr2CaCu2O8 as measured by angle-resolved photoemission spectroscopy. Phys. Rev. B 52, 615–622 (1995).

Campuzano, J. C. et al. Electronic spectra and their relation to the (π,π) collective mode in high-Tc superconductors. Phys. Rev. Lett. 83, 3709–3712 (1999).

Nakano, T. et al. Magnetic properties and electronic conduction of superconducting La2−xSrxCuO4 . Phys. Rev. B 49, 16000–16008 (1994).

Wuyts, B. et al. Resistivity and Hall effect of metallic oxygen-deficient YBa2Cu3Ox films in the normal state. Phys. Rev. B 53, 9418–9432 (1996).

Konstantinovic, Z., Li, Z. Z. & Raffy, H. Normal state transport properties of single and double layered Bi2Sr2Can−1CunOy thin films and the pseudogap effect. Physica C 341–348, 859–862 (2000).

Balents, L., Fisher, M. P. A. & Nayak, C. Nodal liquid theory of the pseudo-gap phase of high-Tc superconductors. Int. J. Mod. Phys. B 12, 1033–1068 (1998).

Sutherland, M. et al. Delocalized fermions in underdoped cuprate superconductors. Phys. Rev. Lett. 94, 147004 (2005).

Shen, K. M. et al. Nodal quasiparticles and antinodal charge ordering in Ca2−xNaxCuO2Cl2 . Science 307, 901–904 (2005).

Ding, H. et al. Electronic excitations in Bi2Sr2CaCu2O8+δ: Fermi surface, dispersion, and absence of bilayer splitting. Phys. Rev. Lett. 76, 1533–1536 (1996).

Norman, M. R., Eschrig, M., Kaminski, A. & Campuzano, J. C. Momentum distribution curves in the superconducting state. Phys. Rev. B 64, 184508 (2001).

Kaminski, A. et al. Identifying the background signal in angle-resolved photoemission spectra of high-temperature cuprate superconductors. Phys. Rev. B 69, 212509 (2004).