Sự phát triển của cộng đồng vi sinh vật trong biofilm của một reactor biofilm màng sử dụng methane để giảm nhiều chất nhận electron

Springer Science and Business Media LLC - Tập 23 - Trang 9540-9548 - 2016
Ran Chen1, Yi-Hao Luo1, Jia-Xian Chen1, Yin Zhang1, Li-Lian Wen1,2,3, Ling-Dong Shi3, Youneng Tang4, Bruce E. Rittmann5, Ping Zheng1,2,3, He-Ping Zhao1,2,3
1Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Zhejiang University, Hangzhou, China
2MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Zhejiang University, Hangzhou, China
3Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
4Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, USA
5Swette Center for Environmental Biotechnology, Biodesign Institute at Arizona State University, Tempe, USA

Tóm tắt

Công trình nghiên cứu trước đây đã chứng minh khả năng giảm hoàn toàn perchlorate trong một reactor biofilm màng (MBfR) sử dụng methane làm nguồn electron và carbon duy nhất. Nghiên cứu này khám phá cách cộng đồng vi sinh vật của biofilm tiến hóa khi biofilm giảm dần các tổ hợp khác nhau của perchlorate, nitrate và nitrite. Mẫu cấy ban đầu, thực hiện quá trình oxy hóa methane kị khí kết hợp với quá trình khử nitrat (ANMO-D), được chiếm ưu thế bởi các dòng vi khuẩn Anaerolineaceae và Ferruginibacter chưa được nuôi cấy. Cộng đồng vi sinh vật đã thay đổi đáng kể sau khi được cấy vào MBfR dựa trên CH4 và được nuôi bằng một môi trường chứa perchlorate và nitrite. Các Archaea đã biến mất trong vòng 40 ngày đầu tiên, và các dòng vi khuẩn Anaerolineaceae và Ferruginibacter chưa được nuôi cấy cũng có sự sụt giảm đáng kể. Thay thế chúng là các methanotroph kị khí, đặc biệt là Methylocystis, chiếm hơn 25% tổng số vi khuẩn. Khi các methanotroph bắt đầu trở nên quan trọng, các vi khuẩn khử nitrat oxy hóa methanol, như Methloversatilis và Methylophilus, trở nên quan trọng trong biofilm, có thể bằng cách sử dụng chất hữu cơ được tạo ra từ sự chuyển hóa của methanotroph. Khi việc tiêu thụ methane đạt mức tối đa có thể cung cấp electron, Methylomonas, cũng là một methanotroph kị khí, chiếm hơn 10% tổng số vi khuẩn và vẫn là một phần chính của cộng đồng cho đến cuối thí nghiệm. Chúng tôi đề xuất rằng quá trình oxy hóa methane kị khí kết hợp với khử nitrat và giảm perchlorate (AMO-D và AMO-PR) trực tiếp oxy hóa methane và giảm NO3− thành NO2− hoặc N2O dưới điều kiện kị khí, tạo ra chất hữu cơ cho quá trình khử nitrat hấp thụ methanol và giảm perchlorate (MA-D và MA-PR) để giảm NO3−. Đồng thời, các vi khuẩn có khả năng oxy hóa methane kị khí kết hợp với khử nitrat và giảm perchlorate (ANMO-D và ANMO-PR) sử dụng methane làm tác nhân electron để hô hấp NO3− hoặc ClO4− trực tiếp.

Từ khóa

#methane #biofilm #microbial community #perchlorate reduction #denitrification

Tài liệu tham khảo

Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron-dependent marine methane oxidation. Science 325:184–187 Bender KS, Shang C, Chakraborty R, Belchik SM, Coates JD, Achenbach LA (2005) Identification, characterization, and classification of genes encoding perchlorate reductase. J Bacteriol 187:5090–5096 Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010) Pynast: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26:266–267 Chaudhuri SK, O’Connor SM, Gustavson RL, Achenbach LA, Coates JD (2002) Environmental factors that control microbial perchlorate reduction. Appl Environ Microbiol 68:4425–4430 Coates JD, Achenbach LA (2004) Microbial perchlorate reduction: rocket-fuelled metabolism. Nat Rev 2:569–580 Coates JD, Michaelidou U, Bruce RA, O’Connor SM, Crespi JN, Achenbach LA (1999) Ubiquity and diversity of dissimilatory (per)chlorate-reducing bacteria. Appl Environ Microbiol 65:5234–5241 Dam B, Dam S, Blom J, Liesack W (2013) Genome analysis coupled with physiological studies reveals a diverse nitrogen metabolism in Methylocystis sp. strain SC2. Plos One. doi:10.1371/journal.pone.0074767 DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16s rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072 Dimitri Kits K, Klotz MG, Stein LY (2015) Methane oxidation coupled to nitrate reduction under hypoxia by the Gammaproteobacteria Methylomonas denitrificans sp. nov., type strain FJG1. Environ Microbiol. doi:10.1111/1462-2920.12772 Doronina N, Ivanova E, Trotsenkoa Y, Pshenichnikovab A, Kalininab E, Shvetsb V (2005) Methylophilus quaylei sp. nov., a new aerobic obligately methylotrophic bacterium. Syst Appl Microbiol 28:303–309 Edgar RC (2010) Search and clustering orders of magnitude faster than blast. Bioinformatics 26:2460–2461 Eisentraeger A, Klag P, Vansbotter B, Heymann E, Dott W (2001) Denitrification of groundwater with methane as sole hydrogen donor. Water Res 35:2261–2267 Ettwig KF, van Alen T, van de Pas-Schoonen KT, Jetten MSM, Strous M (2009) Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum. Appl Environ Microbiol 75:3656–3662 Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MMM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJCT, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, Op den Camp HJM, Janssen-Megens EM, Francoijs KJ, Stunnenberg H, Weissenbach J, Jetten MSM, Strous M (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:544–548 Ginige MP, Hugenholtz P, Daims H, Wagner M, Keller J, Blackall LL (2004) Use of stable-isotope probing, full-cycle rRNA analysis, and fluorescence in situ hybridization-microautoradiography to study a methanol-fed denitrifying microbial community. Appl Environ Microbiol 70:588–596 Haroon MF, Hu SH, Shi Y, Imelfort M, Keller J, Hugenholtz P, Yuan ZG (2013) Anaerobic oxidation of methane coupled to nitrate reduction in anovel archaeal lineage. Nature 500:567–570 He ZF, Geng S, Shen LD, Lou LP, Zheng P, Xu XY, Hu BL (2015) The short- and long-term effects of environmental conditions on anaerobic methane oxidation coupled to nitrite reduction. Water Res 68:554–562 Hu S, Zeng RJ, Burow LC, Lant P, Keller J, Yuan ZG (2009) Enrichment of denitrifying anaerobic methane oxidizing microorganisms. Environ Microbiol Rep 1:845–854 Hu SH, Raymond JZ, Mohamed FH, Jurg K, Paul AL, Gene WT, Yuan ZG (2015) A laboratory investigation of interactions between denitrifying anaerobic methane oxidation (DAMO) and anammox processes in anoxic environments. Sci Rep 5:8706. doi:10.1038/srep08706 Knowles R (2005) Denitrifiers associated with methanotrophs and their potential impact on the nitrogen cycle. Ecol Eng 24:441–446 Lai CY, Yang XE, Tang YN, Rittmann BE, Zhao HP (2014) Nitrate shaped the selenate-reducing microbial community in a hydrogen-based biofilm reactor. Environ Sci Technol 48:3395–3402 Logan BE, Zhang H, Mulvaney P, Milner MG, Head IM, Unz RF (2001) Kinetics of perchlorate- and chlorate-respiring bacteria. Appl Environ Microbiol 67:2499–2506 Lozupone C, Hamady M, Knight R (2006) UniFrac—an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinf 7:371–385 Luo YH, Chen R, Wen LL, Meng F, Lai CY, Rittmann BE, Zhao HP, Zhen P (2015) Complete perchlorate reduction using methane as the sole electron donor and carbon source. Environ Sci Technol 49:2341–2349 Modin O, Fukushi K, Yamamoto K (2007) Denitrification with methane as external carbon source. Water Res 41:2726–2738 Modin O, Fukushi K, Nakajima F, Yamamoto K (2010) Nitrate removal and biofilm characteristics in methanotrophic membrane biofilm reactors with various gas supply regimes. Water Res 44:85–96 Nerenberg R, Rittmann BE, Najm I (2002) Perchlorate reduction in a hydrogen-based membrane-biofilm reactor. J Am Water Works Assoc 94:103–114 Nerenberg R, Kawagoshi Y, Rittmann BE (2008) Microbial ecology of a perchlorate-reducing, hydrogen-based membrane biofilm reactor. Water Res 42:1151–1159 Ontiveros-Valencia A, Tang YN, Zhao HP, Friese D, Ryan O, Smith J, Evans P, Rittmann BE, Krajmalnik-Brown R (2014) Pyrosequencing analysis yields comprehensive assessment of microbial communities in pilot-scale two-stage membrane biofilm reactors. Environ Sci Technol 48:7511–7518 Osaka T, Yoshie S, Tsuneda S, Hirata A, Iwami N, Inamori Y (2006) Identification of acetate- or methanol-assimilating bacteria under nitrate-reducing conditions by stable-isotope probing. Microb Ecol 52:253–266 Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJP, Ettwig KF, Rijpstra WIC, Schouten S, Sinninghe Damste JS, Op den Camp HJM, Jetten MSM, Strous M (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440:918–921 Rikken GB, Kroon AGM, van Ginkel CG (1996) Transformation of (per)chlorate into chloride by a newly isolated bacterium: reduction and dismutation. Appl Microbiol Biotechnol 45:420–426 Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504 Sun FY, Dong WY, Shao MF, Lv XM, Li J, Peng LY, Wang HJ (2013) Aerobic methane oxidation coupled to denitrification in a membrane biofilm reactor: treatment performance and the effect of oxygen ventilation. Bioresour Technol 146:2–9 Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729 Tang Y, Zhao HP, Marcus A, Krajmalnik-Brown R, Rittmann BE (2012) A steady-state-biofilm model for simultaneous reduction of nitrate and perchlorate—part 2: parameter optimization and results and discussion. Environ Sci Technol 46:1608–1615 United States Environmental Protection Agency (2001) Record of decision of the Western http://www.epa.gov/superfund/sites/rods/fulltext/r0901535.pdf United States Environmental Protection Agency (2015) Basic information about nitrate in drinking water. http://water.epa.gov/drink/contaminants/basicinformation/nitrate.cfm Water Resource Foundation (2015). Perchlorate in drinking water regulatory update and treatment options. http://www.waterrf.org/resources/stateofthesciencereports/perchlorate_stateofthescience.pdf Wu ML, Ettwig KF, Jetten MSM, Strous M, Keltjens JT, van Niftrik LA (2011) New intra-aerobic metabolism in the nitrite-dependent anaerobic methane-oxidizing bacterium Candidatus Methylomirabilis oxyfera. Biochem Soc Trans 39:243–248 Wu ML, Wessels HJCT, Pol A, den Camp JMO, Jetten MSM, von Niftrik L, Keltjens JT (2015) Xoxf-Type methanol dehydrogenase from the anaerobic methanotroph “Candidatus Methylomirabilis oxygera”. Appl Environ Microb 81:1442–1451 Yao S, Ni J, Zhao S, Qiang C, Zhang H, Wang S (2013) COD and nitrogen removal in facilitated transfer membrane-aerated biofilm reactor (FT-MABR). J Membr Sci 389:257–264 Zhao HP, Van Ginkel S, Tang Y, Kang DW, Rittmann BE, Krajmalnik-Brown R (2011) Interactions between perchlorate and nitrate reductions in the biofilm of a hydrogen-based membrane biofilm reactor. Environ Sci Technol 45:10155–10162