Evolution of the Steklov eigenvalue under geodesic curvature flow
Tóm tắt
On a two-dimensional compact Riemannian manifold with boundary, we prove that the first nonzero Steklov eigenvalue is nondecreasing along the unnormalized geodesic curvature flow if the initial metric has positive geodesic curvature and vanishing Gaussian curvature. Using the normalized geodesic curvature flow, we also obtain some estimate for the first nonzero Steklov eigenvalue. On the other hand, we prove that the compact soliton of the geodesic curvature flow must be the trivial one.
Tài liệu tham khảo
AIM Problem Lists: Geometric flows and Riemannian geometry (2015). http://aimpl.org/flowriemannian
Brendle, S.: A family of curvature flows on surfaces with boundary. Math. Z. 241, 829–869 (2002)
Brendle, S.: Curvature flows on surfaces with boundary. Math. Ann. 324, 491–519 (2002)
Cao, X.: Eigenvalues of \((-\Delta +\frac{R}{2})\) on manifolds with nonnegative curvature operator. Math. Ann. 377, 435–441 (2007)
Cao, X.: First eigenvalues of geometric operators under the Ricci flow. Proc. Am. Math. Soc. 136, 4075–4078 (2008)
Cao, X., Hou, S., Ling, J.: Estimate and monotonicity of the first eigenvalue under the Ricci flow. Math. Ann. 354, 451–463 (2012)
Colbois, B., El Soufi, A., Girouard, A.: Isoperimetric control of the Steklov spectrum. J. Funct. Anal. 261, 1384–1399 (2011)
Fraser, A., Schoen, R.: The first Steklov eigenvalue, conformal geometry, and minimal surfaces. Adv. Math. 226, 4011–4030 (2011)
Girouard, A., Polterovich, I.: Upper bounds for Steklov eigenvalues on surfaces. Electron. Res. Announc. Math. Sci. 19, 77–85 (2012)
Hassannezhad, A.: Conformal upper bounds for the eigenvalues of the Laplacian and Steklov problem. J. Funct. Anal. 261, 3419–3436 (2011)
Ho, P.T.: A characterization of the disk by eigenfunction of the Steklov eigenvalue. Manuscr. Math. 154, 297–307 (2017)
Ho, P.T.: First eigenvalues of geometric operators under the Yamabe flow (2017). arxiv:1803.07787
Ho, P.T.: Prescribed curvature flow on surfaces. Indiana Univ. Math. J. 60, 1517–1542 (2011)
Ho, P.T.: The long time existence and convergence of the CR Yamabe flow. Commun. Contemp. Math. 14, 50 (2012)
Li, J.F.: Eigenvalues and energy functionals with monotonicity formulae under Ricci flow. Math. Ann. 338, 927–946 (2007)
Osgood, B., Phillips, R., Sarnak, P.: Extremals of determinants of Laplacians. J. Funct. Anal. 80, 148–211 (1988)
Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. arXiv:math/0211159
Wang, E.M., Zheng, Y.: Regularity of the first eigenvalue of the \(p\)-Laplacian and Yamabe invariant along geometric flows. Pac. J. Math. 254, 239–255 (2011)
Wu, J.Y.: First eigenvalue monotonicity for the \(p\)-Laplace operator under the Ricci flow. Acta Math. Sin. (Engl. Ser.) 27, 1591–1598 (2011)
Wu, J.Y., Wang, E.M., Zheng, Y.: First eigenvalue of the \(p\)-Laplace operator along the Ricci flow. Ann. Glob. Anal. Geom. 38, 27–55 (2010)
Zhang, H.: Evolution of curvatures on a surface with boundary to prescribed functions. Manuscr. Math. 149, 153–170 (2016)
Zhang, H.: Prescribing the boundary geodesic curvature on a compact scalar-flat Riemann surface via a flow method. Pac. J. Math. 273, 307–330 (2015)
Zhao, L.: The first eigenvalue of Laplace operator under powers of mean curvature flow. Sci. China Math. 53, 1703–1710 (2010)
Zhao, L.: The first eigenvalue of the \(p\)-Laplace operator under powers of mean curvature flow. Math. Methods Appl. Sci. 37, 744–751 (2014)