Evolution of the Lower Permian Rochlitz volcanic system, Eastern Germany: reconstruction of an intra-continental supereruption

International Journal of Earth Sciences - Tập 110 - Trang 1995-2020 - 2021
Marcel Hübner1, Christoph Breitkreuz1, Alexander Repstock2, Bernhard Schulz3, Anna Pietranik4, Manuel Lapp2, Franziska Heuer5
1Institute of Geology, TU Bergakademie Freiberg, Freiberg, Germany
2Saxon State Office for Environment, Agriculture and Geology, Department of Geology, Freiberg, Germany
3Institute of Mineralogy, TU Bergakademie Freiberg, Freiberg, Germany
4Institute of Geological Science, University of Wrocław, Wrocław, Poland
5Museum of Natural Science, Leibniz Institute for Research on Evolution and Biodiversity, Berlin, Germany

Tóm tắt

Extensional tectonics in the Late Paleozoic Central Europe was accompanied by rift magmatism that triggered voluminous intracontinental caldera-forming eruptions. Among these, the Lower Permian Rochlitz Volcanic System (RVS) in the North Saxon Volcanic Complex (Eastern Germany, Saxony) represents a supereruption (VEI 8, estimated volume of 1056 km3) of monotonous rhyolites followed by monotonous intermediates. Mapping, petrography, whole-rock geochemistry along with mineral chemistry and oxygen isotopes in zircon display its complex eruption history and magma evolution. Crystal-rich (> 35 vol%), rhyolitic Rochlitz-α Ignimbrite with strong to moderate welding compaction erupted in the climactic stage after reheating of the magma by basaltic injections. Due to magma mixing, low-volume trachydacitic-to-rhyolitic Rochlitz-β Ignimbrite succeeded, characterized by high Ti and Zr-values and zircon with mantle δ18O. Randomly oriented, sub-horizontally bedded fiamme, and NW–SE striking subvolcanic bodies and faults suggest pyroclastic fountaining along NW–SE-oriented fissures as the dominant eruption style. Intrusion of the Leisnig and the Grimma Laccoliths caused resurgence of the Rochlitz caldera forming several peripheral subbasins. In the post-climactic stage, these were filled with lava complexes, ignimbrites and alluvial to lacustrine sediments. Significant Nb and Ta anomalies and high Nb/Ta ratios (11.8–17.9) display a high degree of crustal contamination for the melts of the RVS. Based on homogenous petrographic and geochemical composition along with a narrow range of δ18O in zircon Rochlitz-α Ignimbrite were classified as monotonous rhyolites. For the Rochlitz-β Ignimbrites, underplating and mixing with basic melts are indicated by Mg-rich annite–siderophyllite and δ18O < 6.0 in zircon. The wide spectrum of δ18O on zircon suggests an incomplete mixing process during the formation of monotonous intermediates in the RVS.

Tài liệu tham khảo

Anegg R (1970) Zur Petrographie und Vulkanotektonik des Grimmaer Quarzporphyrs im Nordsächsischen Vulkanitkomplex. Wissenschaftliche Zeitschrift, Universität Halle 4:79–86 Awdankiewicz M (1999) Volcanism in a late Variscan intramontane trough—the petrology and geochemistry of the Carboniferous and Permian volcanic rocks of the intra-sudetic basin. Geol Sudet 32:83–111 Awdankiewicz M, Breitkreuz C, Ehling, B-C (2004) Emplacement textures in Late Palaeozoic andesite sills of the Flechtingen-Roßlau Block, north of Magdeburg (Germany). In: Breitkreuz, C, Petford N (eds) Physical geology of high-level magmatic systems. Geological Society, London, Special Publication, vol 234, pp 51–66 Bachmann O, Bergantz GW (2004) On the origin of crystal-poor rhyolites. Extracted from batholithic crystal mushes. J Petrol 45(8):1565–1582. https://doi.org/10.1093/petrology/egh019 Bachmann O, Bergantz GW (2008a) Deciphering magma chamber dynamics from styles of compositional zoning in large silicic ash flow sheets. In: Putirka KD Tepley FJ (eds) Minerals, inclusions and volcanic processes. Mineralogical Society of America and Geochemical Society, Reviews in Mineralogy and Geochemistry, vol 69, pp 651–674 Bachmann O, Bergantz GW (2008) The Magma reservoirs that feed supereruptions. Elements 4(1):17–21. https://doi.org/10.2113/GSELEMENTS.4.1.17 Bachmann O, Huber C (2016) Silicic magma reservoirs in the Earth’s crust. Am Miner 101(11):2377–2404. https://doi.org/10.2138/am-2016-5675 Bachmann O, Dungan MA, Lipman PW (2000) Voluminous lava-like precursor to a major ash-flow tuff. Low-column pyroclastic eruption of the Pagosa Peak Dacite, San Juan volcanic field Colorado. J Volcanol Geotherm Res 98(1–4):153–171. https://doi.org/10.1016/S0377-0273(99)00185-7 Bachmann O, Dungan MA, Lipman PW (2002) The Fish Canyon Magma Body, San Juan Volcanic Field, Colorado Rejuvenation and Eruption of an Upper-Crustal Batholith. J Petrol 43(8):1469–1504 Ballouard C, Poujol M, Boulvais P, Branquet Y, Tartèse R, Vigneresse JL (2015) Is the Nb–Ta fractionation a marker of an interaction with fluids in peraluminous granites? SGA2015: 13th biennial meeting. Nancy, France Barthel M, Götzelt V, Urban G (1976) Die Rotliegendflora Sachsens. Abhandlungen des Staatlichen Museums für Mineralogie und Geologie, Dresden, vol 24 Benek R (1980) Geologisch-strukturelle Untersuchungen im Tharandter Vulkanitkomplex (Südteil DDR). Z Geol Wiss 8:627–643 Benek R, Jentsch F, Pälchen W, Röllig G (1977) Die permosilesichen Vulkanite von Meißen, des Tharandter Waldes und des Osterzgebirges. Variszischer subsequenter Vulkanismus. Exkursionsführer Tagung Ges Geol Wiss DDR, Leipzig, pp 52–69 Benek R, Kramer W, McCann T, Scheck M, Negendank JFW, Korich D (1996) Permo-Carboniferous magmatism of the Northeast German Basin. Tectonophysics 266(1–4):379–404. https://doi.org/10.1016/S0040-1951(96)00199-0 Boy JA, Haneke J, Kowalczyk G, Lorenz V, Schindler T, Stollhofen H, Thum H (2012) Rotliegend im Saar-Nahe-Becken, am Taunus-Südrand und im nördlichen Oberrheingraben. In: Lützner H, Kowalczyk G (eds.): Stratigraphie von Deutschland X. Rotliegend. Teil I: Innervariszische Becken. Schriftenreihe der deutschen Gesellschaft für Geowissenschaften, vol 61, Hannover, pp 254–377 Branney MJ, Kokelaar P (1994) Volcanotectonic faulting, soft-state deformation, and rheomorphism of tuffs during development of a piecemeal caldera, English Lake District. Geol Soc Am Bull 106(4):507–530 Branney MJ, Kokelaar P (2002) Pyroclastic density currents and the sedimentation of ignimbrites. Geological Society of London Branney MJ, Bonnichsen B, Andrews GDM, Ellis B, Barry TL, McCurry M (2008) ‘Snake River (SR) -type’ volcanism at the Yellowstone hotspot track: distinctive products from unusual, high-temperature silicic super-eruptions. Bull Volcanol 70:293–314. https://doi.org/10.1007/s00445-007-0140-7 Breiter K, Novák JK, Chlupáčová M (2001) Chemical evolution of volcanic rocks in the Altenberg-Teplice caldera (Eastern Krušné Hory Mts., Czech Republic, Germany). Geolines 13:17–22 Breiter K, Svojtka M, Ackerman L, Švecová K (2012) Trace element composition of quartz from the Variscan Altenberg-Teplice caldera (Krušné hory/Erzgebirge Mts, Czech Republic/Germany): insights into the volcano-plutonic complex evolution. Chem Geol 326:36–50 Breitkreuz C, Kennedy A, Geißler M, Ehling B-C, Kopp J, Muszynski A, Protas A, Stouge S (2007) Far Eastern Avalonia. Its chronostratigraphic structure revealed by SHRIMP zircon ages from Upper Carboniferous to Lower Permian volcanic rocks (drill cores from Germany, Poland, and Denmark). In: Linnemann U (ed) The evolution of the Rheic Ocean. From Avalonian-Cadomian active margin to Alleghenian-Variscan collision, Bd. 423. Boulder, Colo: Geological Soc. of America (Special paper/Geological Society of America, vol 423, pp 173–190 Breitkreuz C, Ehling B-C, Sergeev S (2009) Chronological evolution of an intrusive/extrusive system: the Late Paleozoic Halle Volcanic Complex in the northeastern Saale Basin (Germany). Z dt Ges Geowiss 160:173–190 Breitkreuz C, Ehling, B-C, Pastrik N (2015) The subvolcanic units of the Late Paleozoic Halle Volcanic Complex, Germany: geometry, internal textures and emplacement mode. In: Breitkreuz C, Rocchi S (eds) Physical geology of shallow magmatic systems. Advances in volcanology, Springer, Cambridge, pp 295–307 Breitkreuz C, Ehling B-C, Pastrik N (2018) The subvolcanic units of the Late Palaeozoic Halle Volcanic Complex, Germany: Geometry, internal textures and emplacement mode. In: Breitkreuz C, Rocchi S (eds) Physical geology of shallow magmatic systems—dykes, sills and laccoliths. Advances in volcanology. Springer, pp 295–307 Breitkreuz C, Käßner A, Tichomirowa M, Lapp M, Huang S, Stanek K (2021) The Late Carboniferous deeply eroded Tharandt Forest caldera–Niederbobritzsch granite complex: a post-Variscan long-lived magmatic system in central Europe. Int J Earth Sci 110:1265–1292. https://doi.org/10.1007/s00531-021-02015-x Casas-García R, Rapprich V, Breitkreuz C, Svojtka M, Lapp M, Stanek K, Hofmann M, Linnemann U (2019) Lithofacies architecture, composition, and age of the Carboniferous Teplice Rhyolite (German-Czech border): insights into the evolution of the Altenberg-Teplice Caldera. J Volc Geoth Res 386:106662 Chamberlain KJ, Wilson CJ, Wooden JL, Charlier BL, Ireland TR (2014) New perspectives on the Bishop Tuff from zircon textures, ages and trace elements. J Petrol 55(2):395–426 Chiaradia M, Müntener O, Beate B, Fontignie D (2009) Adakite-like volcanism of Ecuador: lower crust magmatic evolution and recycling. Contrib Mineral Petrol 158(5):563–588 Christiansen EH (2005) Contrasting processes in silicic magma chambers. Evidence from very large volume ignimbrites. Geol Mag 142(6):669–681. https://doi.org/10.1017/S0016756805001445 Cole JW, Milner DM, Spinks KD (2005) Calderas and caldera structures: a review. Earth Sci Rev 69(1–2):1–26 Cook GW, Wolff JA, Self S (2016) Estimating the eruptive volume of a large pyroclastic body: the Otowi Member of the Bandelier Tuff, Valles caldera, New Mexico. Bull Volcanol 78(2):10. https://doi.org/10.1007/s00445-016-1000-0 Cook YA, Sanislav IV, Hammerli J, Blenkinsop TG, Dirks PHGM (2016) A primitive mantle source for the Neoarchean mafic rocks from the Tanzania Craton. Geosci Front 7(6):911–926. https://doi.org/10.1016/j.gsf.2015.11.008 Cooper GF, Wilson CJN (2014) Development, mobilisation and eruption of a large crystal-rich rhyolite. The Ongatiti ignimbrite, New Zealand. Lithos 198–199:38–57. https://doi.org/10.1016/j.lithos.2014.03.014 Dill HG, Dohrmann R, Kaufhold S, Balaban SI (2015) Kaolinization—a tool to unravel the formation and unroofing of the Pleystein pegmatite–aplite system (SE Germany). Ore Geol Rev 69:33–56 Dostal J, Elson C, Dupuy C (1979) Distribution of lead, silver and cadmium in some igneous rocks and their constituent minerals. Can Mineral 17(3):561–567 Ehling B-C, Gebhardt U (2012) Rotliegend im Saale-Becken. In: Lützner H, Kowalczyk G (eds) Stratigraphie von Deutschland X. Rotliegend. Teil I: Innervariszische Becken. Hannover: Schriftenreihe der deutschen Gesellschaft für Geowissenschaften, pp 504–516 Eigenfeld F (1978) Zur geologischen Entwicklung der vulkanischen Gesteine im Süd- und Ostteil des NW-Sächsischen Vulkanitkomplexes. Diss., Fachber. Geol. Wiss., Martin Luther-Univ. Halle-Wittenberg, Halle (Saale) (unpublished) Ellis BS, Wolff JA, Boroughs S, Mark DF, Starkel WA, Bonnichsen B (2013) Rhyolitic volcanism of the central Snake River Plain: a review. Bull Volcanol 75(8):745 Fischer I (1968) Geologische Untersuchungen am Kernmaterial der Bohrung Meltewitz 1/66 (Sa.) diploma thesis, Martin-Luther-University, Halle-Wittenberg (unpublished) Fischer F (1991) Das Rotliegende des ostthüringisch-westsächsischen Raumes (Vorerzgebirgs-Senke, Nordwestsächsischer Vulkanitkomplex, Geraer Becken). Diss., Sektion Geowiss., TU Bergakademie Freiberg, Freiberg (unpublished) Folkes C, Wright H, Cas R, De Silva S, Lesti C, Viramonte J (2011) A re-appraisal of the stratigraphy and volcanology of the Cerro Galan volcanic system, NW Argentina. Bull Volcanol 73(10):1427–1454. https://doi.org/10.1007/s00445-011-0459-y Fridrich CJ, Smith RP, Dewitt ED, Mckee EH (1991) Structural, eruptive, and intrusive evolution of the Grizzly Peak caldera, Sawatch Range, Colorado. Geol Soc Am Bull 103(9):1160–1177. https://doi.org/10.1130/0016-7606(1991)103%3c1160:SEAIEO%3e2.3.CO;2 Geißler M, Breitkreuz C, Kiersnowski H (2008) Late Palaeozoic volcanism in the central part of the Southern Permian Basin (NE Germany, W Poland). Facies distribution and volcano-topographic hiati. Int J Earth Sci 97(5):973–989 Gifkins C, Herrmann W, Large RR (2005) Altered volcanic rocks. A guide to description and interpretation, Hobart, Tasmania. Centre for Ore Deposit Research Gläßer W (1983) Beitrag zur Petrologie und Vulkanologie der andesitoiden Vulkanite Nordwestsachsens. Hallesches Jb F Geowiss 8:1–30 Götze J, Lessig F, Möckel R, Georgi U (2017) Zur Mineralogie von Vulkaniten im Bereich des Kemmlitzer Porphyrs (Oschatz-Formation, Nordwestsächsisches Becken). Veröff Mus Naturk Chemnitz 40:133–150 Götze J, Möckel R, Breitkreuz C, Georgi U, Klein A (2020) Zur Mineralogie von Vulkaniten und Lithophysen im Bereich des unterpermischen Leisniger Porphyrs (Nordwestsächsisches Becken). Veröff Mus Naturk Chemnitz 43:79–112 Green TH (1995) Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chem Geol 120:347–359 Henry CD, John DA (2013) Magmatism, ash-flow tuffs, and calderas of the ignimbrite flareup in the western Nevada volcanic field, Great Basin, USA. Geosphere 9(4):951–1008. https://doi.org/10.1130/GES00867.1 Henry DJ, Guidotti CV, Thomson A (2005) The Ti-saturation surface for low-to-medium pressure metapelitic biotites Implications for geothermometry and Ti-substitution mechanisms. Am Mineral 90(2–3):316–328. https://doi.org/10.2138/am.2005.1498 Hildreth W (1981) Gradients in silicic magma chambers. Implications for lithospheric magmatism. J Geophys Res 86(B11):10153–10192. https://doi.org/10.1029/JB086iB11p10153 Hildreth W (2004) Volcanological perspectives on Long Valley, Mammoth Mountain, and Mono Craters. Several contiguous but discrete systems. J Volcanol Geotherm Res 136(3–4):169–198. https://doi.org/10.1016/j.jvolgeores.2004.05.019 Hildreth W, Mahood GA (1986) Ring-fracture eruption of the Bishop Tuff. Geol Soc Am Bull 97:396–403 Hoffmann U, Breitkreuz C, Breiter K, Sergeev S, Stanek K, Tichomirowa M (2013) Carboniferous-Permian volcanic evolution in Central Europe—U/Pb ages of volcanic rocks in Saxony (Germany) and northern Bohemia (Czech Republic). Int J Earth Sci 102(1):73–99. https://doi.org/10.1007/s00531-012-0791-2 Hohl R, Wilsdorf E (1966) Der Leisniger Quarzporphyr des nordsächsischen Porphyrgebietes und seine Verwitterung. N. Jb. Geol. Paläont. Mh., 4–13. Horsman E, Morgan S, de Saint-Blanquat M, Habert G, Nugent A, Hunter RA, Tikoff B (2009) Emplacement and assembly of shallow intrusions from multiple magma pulses, Henry Mountains, Utah. Earth Environ Sci Trans R Soc Edinb 100(1–2):117–132 Huber C, Bachmann O, Manga M (2009) Homogenization processes in silicic magma chambers by stirring and mushification (latent heat buffering). Earth Planet Sci Lett 283(1–4):38–47. https://doi.org/10.1016/j.epsl.2009.03.029 Huber C, Bachmann O, Dufek J (2012) Crystal-poor versus crystal-rich ignimbrites: a competition between stirring and reactivation. Geol 40:115–118 Hutton DHW (2009) Insights into magmatism in volcanic margins: bridge structures and a new mechanism of basic sill emplacement–Theron Mountains, Antarctica. Pet Geosci 15(3):269–278 Ickert RB, Hiess J, Williams IS, Holden P, Ireland TR, Lanc P, Schramm N, Foster JJ, Clement SW (2008) Determining high precision, in situ, oxygen isotope ratios with a SHRIMP II: Analyses of MPI-DING silicate-glass reference materials and zircon from contrasting granites. Chem Geol 257(1–2):114–128 Ishikawa Y, Sawaguchi T, Iwaya S, Horiuchi M (1976) Delineation of prospecting targets for kuroko deposits based on modes of volcanism of underlying dacite and alteration Halos. Min Geol 26:105–117 Jentsch F (1979) Zur minerogenetischen Bedeutung der Gesteinsgläser des Magmatismus des Subsequenzstadiums im sächsischen Raum. – Diss., TU Bergakademie Freiberg, Freiberg. (unpublished) John DA, Colgan JP, Henry CD, Wooden JL (2009) Prolonged Eocene magmatism culminating with the Caetano caldera, Cortez area, Nevada: Inferences from SHRIMP U–Pb zircon dating: Eos (Transactions, American Geophysical Union), 90 (52), Fall Meeting Supplement, Abstract V41B-2187 Johnston EN, Sparks RSJ, Phillips JC, Carey S (2014) Revised estimates for the volume of the Late Bronze Age Minoan eruption, Santorini, Greece. J Geol Soc 171(4):583–590 Kaiser JF, de Silva S, Schmitt AK, Economos R, Sunagua M (2017) Million-year melt–presence in monotonous intermediate magma for a volcanic–plutonic assemblage in the Central Andes. Contrasting histories of crystal-rich and crystal-poor super-sized silicic magmas. Earth Planet Sci Lett 457:73–86. https://doi.org/10.1016/j.epsl.2016.09.048 Kennedy B, Wilcock J, Stix J (2012) Caldera resurgence during magma replenishment and rejuvenation at Valles and Lake City calderas. Bull Volcanol 74(8):1833–1847. https://doi.org/10.1007/s00445-012-0641-x Kuhn B (1968) Vulkanotektonische und petrographische Untersuchungen im Rochlitzer Quarzporphyrkomplex Nordwestsachsen (Gebiet Bad Lausick-Großbothen-Colditz). dipl. thesis, Martin-Luther-University, Halle-Witternberg (unpublished) Lubbers J, Deering C, Bachmann O (2020) Genesis of rhyolitic melts in the upper crust: fractionation and remobilization of an intermediate cumulate at Lake City caldera, Colorado, USA. J Volcanol Geoth Res 392:106750 Le Maitre RW, Bateman P, Dudek A, Keller J, Lameyre Le Bas MJ, Sabine PA, Schmid R, Sorensen H, Streckeisen A, Woolley AR, Zanettin B (1989) A classification of igneous rocks and glossary of term. Blackwell, Oxford Lipman PW (1976) Caldera-collapse breccias in the western San Juan Mountains, Colorado. Geol Soc Am Bull 87(10):1397–1410 Lipman PW (1984) The roots of ash flow calderas in western North America: Windows into the tops of granitic batholiths. J Geophys Res 89(B10):8801–8841. https://doi.org/10.1029/JB089iB10p08801 Lipman PW (1997) Subsidence of ash-flow calderas: relation to caldera size and magma-chamber geometry. Bull Volcanol 59(3):198–218 Lipman PW (2000) The central San Juan Caldera cluster: Regional volcanic framework. In: Bethke PM, Hay RL (eds) Ancient Lake Creede: its volcano-tectonic setting, history of sedimentation, and relation of mineralization in the Creede mining district. Geological Society of America Special Paper, vol 346, pp 9–69. https://doi.org/10.1130/0-8137-2346-9.9 Lipman PW (2006) Geologic map of the central San Juan Caldera cluster, southwestern Colorado. U.S. Geological Survey Geologic Investigations Series I-2799, 4 sheets, scale 1:24,000 Lorenz V, Haneke J (2004) Relationship between diatreme, dykes, sills, laccoliths, intrusive-extrusive domes, lava flows and tephra deposits with unconsolidated water-saturated sediments in the late Variscan intermontane Saar-Nahe Basin, SW Germany. In: Breitkreutz C, Petford N (eds) Physical geology of high-level magmatic systems. Geological Society of London, Special Publications, vol 234, pp 75–124, London Manley CR (1996) In situ formation of welded tuff-like textures in the carapace of a voluminous silicic lava flow, Owyhee County, SW Idaho. Bull Volcanol 57:672–686 Manley CR, Fink JH (1987) Internal textures of rhyolite flows as revealed by research drilling. Geology 15(6):549–552 Mason BG, Pyle DM, Oppenheimer C (2004) The size and frequency of the largest explosive eruptions on Earth. Bull Volcanol 66(8):735–748 Matthews NE, Pyle DM, Smith VC, Wilson CJN, Huber C, van Hinsberg V (2012) Quartz zoning and the pre-eruptive evolution of the ~340-ka Whakamaru magma systems, New Zealand. Contr Miner Petrol 163(1):87–107. https://doi.org/10.1007/s00410-011-0660-1 McDonough WF, Sun S-S (1995) The composition of Earth. Chem Geol 120:223–253 Miller CF, Stoddard EF (1981) The role of manganese in the paragenesis of magmatic garnet. An example from the Old Woman-Piute Range, California. J Geol 89(2):233–246. https://doi.org/10.1086/628582 Mlčoch B, Skácelová Z (2010) Geometry of the Altenberg-Teplice Caldera revealed by the borehole and seismic data in its Czech part. J Geosci 55(3):217–229 Nachit H, Ibhi A, Ohoud MB (2005) Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites. CR Geosci 337(16):1415–1420 Newhall CG, Self S (1982) The volcanic explosivity index (VEI) an estimate of explosive magnitude for historical volcanism. J Geophys Res 87(C2):1231–1238. https://doi.org/10.1029/JC087iC02p01231 Patiño Douce AE, Johnston AD (1991) Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites. Contrib Mineral Petrol 107:202–218 Paulick H, Breitkreuz C (2005) The Late Palaeozoic felsic lava-dominated large igneous province in northeast Germany. Volcanic facies analysis based on drill cores. Int J Earth Sci 94(5–6):834–850. https://doi.org/10.1007/s00531-005-0017-y Pearce JA (1996) A user’s guide to basalt discrimination diagrams. In: Wyman DA (ed) Trace element geochemistry of volcanic rocks: applications for massive sulphide exploration. Geological Association of Canada, Short Course Notes, vol 12, pp 79–113 Pietzsch K (1962) Geologie von Sachsen, 1st edn. VEB Dtsch. Verl. Wiss, Berlin Quane SL, Russell JK (2005) Ranking welding intensity in pyroclastic deposits. Bull Volcanol 67(2):129–143 Rampino MR, Self S (1992) Volcanic winter and accelerated glaciation following the Toba super-eruption. Nature 359:50–52 Reichel W, Schneider JW (2012) Rotliegend im Döhlen-Becken. – Deutsche Stratigraphische Kommission. In: Lützner H, Kowalczyk G (eds) Stratigraphie von Deutschland X. Rotliegend. Teil I: Innervariscische Becken. Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften, vol 61, pp 589–625, Hannover Repstock A, Breitkreuz C, Lapp M, Schulz B (2018) Voluminous and crystal-rich igneous rocks of the Permian Wurzen volcanic system, northern Saxony, Germany. Physical volcanology and geochemical characterization. Int J Earth Sci 6(9):1485–1513. https://doi.org/10.1007/s00531-017-1554-x Repstock A, Heuer F, Im J, Hübner M, Schulz B, Breitkreuz C, Gilbricht S, Fischer F, Lapp M (2019) A Late Paleozoic Snake River-type ignimbrite (Planitz vitrophyre) in the Chemnitz Basin, Germany: Textural and compositional evidence for complex magma evolution in an intraplate setting. J Volcanol Geoth Res 369:35–49 Repstock A, Breitkreuz C, Schulz B, Heuer F, Gilbricht S, Lapp M, Gevorgyan H (2021) The Early Permian intraplate Wurzen caldera system of northern Saxony, Germany: insights into magma chamber dynamics and implications for the eruption of a crystal-rich monotonous intermediate ignimbrite. J Volcanol Geothermal Res (under review) Rocchi S, Breitkreuz C (2018) Physical Geology of Shallow-level magmatic systems—an Introduction. In: Breitkreuz C, Rocchi S (eds) Physical geology of shallow magmatic systems—dykes, sills and laccoliths. Advances in volcanology. Springer, pp 1–10 Roche O, Druitt TH, Merle O (2000) Experimental study of caldera formation. J Geophys Res 105(B1):395–416. https://doi.org/10.1029/1999JB900298 Röllig G (1969) Beiträge zur Petrogenese und Vulkanotektonik der Pyroxenquarzporphyre Nordwestsachsens. Diss., Martin Luther-Univ. Halle-Wittenberg, Halle (Saale) (unpublished) Röllig G (1976) Zur Petrogenese und Vulkanotektonik der Pyroxenquarzporphyre (Ignimbrite) des Nordsächsischen Vulkanitkomplexes. Jb. f. Geol., 5/6 f. 1969/70: 175–268, Berlin Röllig G, Eigenfeld F, Fischer I, Kuhn B (1970) Die Ignimbrite des Nordsächsischen Vulkanitkomplexes. Wiss z Univ Halle 19:67–78 Romer RL, Förster H, Breitkreuz C (2001) Intracontinental extensional magmatism with a subduction fingerprint: the late Carboniferous Halle Volcanic Complex (Germany). Contrib Mineral Petrol 141:201–221 Schneider JW, Rößler R, Fischer F (2012) Rotliegend des Chemnitz-Beckens (syn. Erzgebirge-Becken). In: Lützner H, Kowalczyk G (eds) Stratigraphie von Deutschland X. Rotliegend. Teil I: Innervariszische Becken, Schriftenreihe der deutschen Gesellschaft für Geowissenschaften, vol 61, pp 530–588 Hannover Schwerdtner G, Störr M (1983) Die Kaolinlagerstätten des Gebietes Kemmlitz/Bezirk Leipzig – Genese, Geologie und Stoffbestand, wirtschaftliche Bedeutung. Silikattechnik, vol 34(6), pp 169–174, Berlin Słodczyk E, Pietranik A, Breitkreuz C, Pędziwiatr A, Bokła M, Schab K, Grodzicka M (2015) Formation of a laccolith by magma pulses: Evidence from modal and chemical composition of the 500 m long borehole section through the Permo-Carboniferous Landsberg laccolith (Halle Volcanic Complex). Geochem J 49(5):523–537 Słodczyk E, Pietranik A, Breitkreuz C, Fanning CM, Anczkiewicz R, Ehling B-C (2016) Rhyolite magma evolution recorded in isotope and trace element composition of zircon from Halle Volcanic Complex. Lithos 248:402–417 Smith RL (1979) Ash-flow magmatism. In: Chapin CE, Elston WE (eds) Ash-flow tuffs, 180, Geological Society of America, Boulder, Colo. (Special paper, 180), pp 5–28 Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts. Implications for mantle composition and processes. Geological Society, London, Special Publications, vol 42, no 1, pp 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19 Thompson RN, Morrison MA, Hendry GL, Parry SJ (1984) An assessment of the relative roles of crust and mantle in magma genesis. An elemental approach. Philos Trans R Soc Lond Ser A Math Phys Sci 310(1514):549–590. https://doi.org/10.1098/rsta.1984.0008 Timmerman MJ (2008) Palaeozoic magmatism. In: McCann T (ed) The geology of Central Europe, vol 1. Precambrian and Palaeozoic. Geological Society, London, pp 665–748 Valley JW (2003) Oxygen isotopes in zircon. In: Hanchar JM, Hoskin PWO (eds) Zircon Rev Mineral, vol 53, pp 343–-385 Vogel TA, Patino LC, Alvarado GE, Gans PB (2004) Silicic ignimbrites within the Costa Rican volcanic front. Evidence for the formation of continental crust. Earth Planet Sci Lett 226(1–2):149–159. https://doi.org/10.1016/j.epsl.2004.07.013 Walter H (1991) Zum Alter der Kaolinisierung in Sachsen. Mauritiana, vol 13, no 1/2, pp 213–224, Altenburg Walter H (2006) Das Rotliegende der Nordwestsächsischen Senke. Veröff Mus Naturkunde Chemnitz 29:157–176 Walter H (2010) Die wissenschaftliche Grabung Börtewitz: Lebewelt eines 290 Mio. Jahre alten Sees. In: Rascher J, Heidenfelder W, Walter H (eds) Landschaftsentwicklung, Bodenschätze und Bergbau zwischen Mulde und Elbe (Nordwestsachsen). Exkursionsführer und Veröffentlichung DGG, vol 243. Hannover, pp 51–64 Walter H (2012) Rotliegend im Nordwestsächsischen Becken. In: Lützner H, Kowalczyk G (eds) Stratigraphie von Deutschland X. Rotliegend. Teil I: Innervariszische Becken, Schriftenreihe der deutschen Gesellschaft für Geowissenschaften, vol 61, Hannover, pp 517–529 Walther D, Breitkreuz C, Rapprich V, Kochergina YV, Chlupáčová M, Lapp M, Stanek K, Magna T (2016) The Late Carboniferous Schönfeld-Altenberg Depression on the NW margin of the Bohemian Massif (Germany/Czech Republic). Volcanosediment Magmat Evol J Geosci 4(61):371–393. https://doi.org/10.3190/jgeosci.219 Watts KE, John DA, Colgan JP, Henry CD, Bindeman IN, Schmitt AK (2016) Probing the volcanic–plutonic connection and the genesis of crystal-rich rhyolite in a deeply dissected supervolcano in the Nevada Great Basin: source of the Late Eocene Caetano Tuff. J Petrol 57(8):1599–1644 Wendt I, Höhndorf A, Wendt JI, Müller P, Wetzel K (1995) Radiometric dating of volcanic rocks in NW Saxony by combined use of U–Pb and Sm–Nd zircon dating as well as Sm–Nd and Rb–Sr whole-rock and mineral systematics. Terra Nostra 1995, 7 (11th meeting on geodynamics of the European Variscides, 2nd. Symposium on Permocarboniferous Igneous Rocks), pp 147–148, Potsdam Wetzel K, Gerstenberger H, Wand G, Wendt I (1995) Zur Geochemie der nordwestsächsischen Vulkanite. Z Geol Wiss 23(4):371–400 Willcock MAW, Cas RAF (2014) Primary welding and crystallisation textures preserved in the intra-caldera ignimbrites of the Permian Ora Formation, northern Italy: implications for deposit thermal state and cooling history. Bull Volcanol 76:819. https://doi.org/10.1007/s00445-014-0819-5 Willcock MAW, Cas RAF, Giordano G, Morelli C (2013) The eruption, pyroclastic flow behaviour, and caldera in-filling processes of the extremely large volume (> 1290 km3), intra-to extra-caldera, Permian Ora (Ignimbrite) Formation, Southern Alps, Italy. J Volcanol Geotherm Res 265:102–126 Wilson CJN, Blake S, Charlier BLA, Sutton AN (2006) The 26.5 ka Oruanui eruption, Taupo volcano, New Zealand: development, characteristics and evacuation of a large rhyolitic magma body. J Petrol 47(1):35–69 Wu CM, Chen HX (2015) Revised Ti-in-biotite geothermometer for ilmenite-or rutile-bearing crustal metapelites. Sci Bull 60(1):116–121