Evolution of structural defects in milled Cd0.3Zn0.7 Se powder studied by electron spin spectroscopy
Tài liệu tham khảo
Zhang, 2013, Formation of highly luminescent Zn1−xCdxSe nanocrystals using CdSe and ZnSe seeds, J Phys Chem Solids, 74, 759, 10.1016/j.jpcs.2013.01.019
Robin, 2006, Relation between growth procedure and confinement properties of CdSe/ZnSe quantum dots, Phys Rev B - Condens Matter Mater Phys, 74, 1, 10.1103/PhysRevB.74.155318
Sebald, 2002, Single-photon emission of CdSe quantum dots at temperatures up to 200 K, Appl Phys Lett, 81, 10.1063/1.1515364
Robin, 2005, Purcell effect for CdSe/ZnSe quantum dots placed into hybrid micropillars, Appl Phys Lett, 87, 10.1063/1.2136433
Darkowski, 1991, Electrodeposition of CdZnSe thin films from selenosulphite solutions, Sol Energy Mater, 23, 75, 10.1016/0165-1633(91)90154-D
Chandramohan, 2004, Preparation and characterization of semiconducting Zn1−xCdxSe thin films, Sol Energy Mater Sol Cells, 81, 371, 10.1016/j.solmat.2003.11.013
Burger, 1984, Temperature gradient solution zoning growth and characterization of ZnxCd1-xSe single crystals, J Cryst Growth, 70, 386, 10.1016/0022-0248(84)90291-4
Zhao, 2007, High pressure photoluminescence of CdZnSe quantum dots: alloying effect, J Appl Phys, 102, 2005, 10.1063/1.2777135
Sonawane, 2013, One pot synthesis, growth mechanism and optical properties of Zn1−xCdxSe graded core/shell and alloy nanocrystals, J Lumin, 135, 154, 10.1016/j.jlumin.2012.10.042
Zhong, 2004, Embryonic Nuclei-Induced Alloying Process for the Reproducible Synthesis of Blue-Emitting Zn x Cd 1 - x Se Nanocrystals with Long-Time Thermal Stability in Size Distribution and Emission Wavelength, J Phys Chem B, 108, 15552, 10.1021/jp048071y
Gu, 2005, A comparison between optically active CdZnSe/ZnSe and CdZnSe/ZnBeSe self-assembled quantum dots: effect of beryllium, Solid State Commun, 134, 677, 10.1016/j.ssc.2005.03.014
Zhang, 1998, A new approach to ZnCdSe quantum dots, Mater Sci Eng B, 51, 127, 10.1016/S0921-5107(97)00245-6
Muh’d, 2015, Mechanochemical solid state synthesis and optical properties of Cd0.5Zn0.5Se nanocrystals, J Mater Sci, 50, 457, 10.1007/s10853-014-8605-5
Radoi, 2004, Luminescence properties of mechanically milled ZnSe, Phys Status Solidi, 201, 3183, 10.1002/pssa.200306879
Baláž, 2013, Hallmarks of mechanochemistry: from nanoparticles to technology, Chem Soc Rev, 42, 7571, 10.1039/c3cs35468g
James, 2012, Mechanochemistry: opportunities for new and cleaner synthesis, Chem Soc Rev, 41, 413, 10.1039/C1CS15171A
Padam, 1991, Study of intrinsic defects in vacuum/air annealed CuInSe2, Sol Energy Mater, 22, 303, 10.1016/0165-1633(91)90037-L
Hoshina, 1967, Electron Spin Resonance of Photosensitive Fe 3+ Centers in CdSe, J Phys Soc Japan, 22, 10.1143/JPSJ.22.1049
Morigaki, 1967, Electron Spin Resonance of Fe3+-Associated Centers in Cadmium Selenide, J Phys Soc Japan, 23, 318, 10.1143/JPSJ.23.318
Rong, 1987, Optically detected magnetic-resonance observation of the isolated zinc interstitial in irradiated ZnSe, Phys Rev Lett, 58, 1486, 10.1103/PhysRevLett.58.1486
Rablau, 1998, Point defects in Cd1−xZnxTe: a correlated photoluminescence and EPR study, J Electron Mater, 27, 813, 10.1007/s11664-998-0058-7
Muh’d, 2015, Mechanochemical solid state synthesis and optical properties of Cd0.5Zn0.5Se nanocrystals, J Mater Sci, 50, 457, 10.1007/s10853-014-8605-5
Smith, 2013, Luminescence properties of defects in nanocrystalline ZnO, J Appl Phys, 113, 1, 10.1063/1.4794001
Akbari-Sharbaf, 2013, Disorder and defect formation mechanisms in molecular-beam-epitaxy grown silicon epilayers, Thin Solid Films, 527, 38, 10.1016/j.tsf.2012.11.140
Cao, 2010, Magnetic anisotropy and ferromagnetic correlations above the Curie temperature in Eu2CuSi3 single crystals, Phys Rev B, 82, 134446, 10.1103/PhysRevB.82.134446
Stefan, 2011, Accurate determination of the spin Hamiltonian parameters for Mn 2+ ions in cubic ZnS nanocrystals by multifrequency EPR spectra analysis, J Magn Reson, 210, 200, 10.1016/j.jmr.2011.03.004
Stoneham, 1969, Shapes of Inhomogeneously Broadened Resonance Lines in Solids, Rev Mod Phys, 41, 82, 10.1103/RevModPhys.41.82
Orlinskii, 2005, Shallow donors in semiconductor nanoparticles: limit of the effective mass approximation, Phys Rev Lett, 94, 1, 10.1103/PhysRevLett.94.097602
Orlinskii, 2004, Probing the wave function of shallow Li and Na donors in ZnO nanoparticles, Phys Rev Lett, 92, 47603, 10.1103/PhysRevLett.92.047603
Fan, 1997, Amorphization of selenium induced by high-energy ball milling, Phys Rev B, 55, 11010, 10.1103/PhysRevB.55.11010
Rong, 1996, Vacancies, interstitials, and close Frenkel pairs on the zinc sublattice of ZnSe, Phys Rev B, 54, 7779, 10.1103/PhysRevB.54.7779
Rong, 1986, Observation by Optically Detected Magnetic Resonance of Frenkel Pairs in Irradiated ZnSe, Phys Rev Lett, 56, 2310, 10.1103/PhysRevLett.56.2310
Galland, 1970, ESR spectra of the zinc vacancy in ZnO, Phys Lett A, 33, 1, 10.1016/0375-9601(70)90614-6
Moldovan, 1996, Photoluminescence And Electron Paramagnetic Resonance Of Nitrogen-Doped Zinc Selenide Epilayers. Symp. E – Defects Electron, Mater. II, 442
Kennedy, 1994, Identification of VSe-impurity pairs in ZnSe:N, Appl Phys Lett, 65, 1112, 10.1063/1.112114
Sampath, 1966, EPR in Selenium, J Chem Phys, 45, 3519, 10.1063/1.1727367
Chen, 1966, g-Value Calculations of Paramagnetic Centers in Amorphous Selenium, J Chem Phys, 45, 3536, 10.1063/1.1727369
Axmann, 1969, Investigations on crystalline tellurium and solid amorphous and liquid selenium with inelastic neutron scattering, Phys Selenium Tellurium, 299, 10.1016/B978-0-08-013895-4.50030-1
von Bardeleben, 1999, Intrinsic defects in photorefractive bulk CdTe and ZnCdTe, J Cryst Growth, 197, 718, 10.1016/S0022-0248(98)00768-4
Schneider GB and WJ and UK and J. An A centre in CdTe. J Phys Condens Matter 1989;1:1925.