Evolution of ion-acoustic soliton waves in Venus’s ionosphere permeated by the solar wind

Advances in Space Research - Tập 67 - Trang 4110-4120 - 2021
M.S. Afify1, I.S. Elkamash2, M. Shihab3,4, W.M. Moslem5,6
1Department of Physics, Faculty of Science, Benha University, 13518 Benha, Egypt
2Department of Physics, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt
3Department of Physics, Faculty of Science, Tanta University, 31527 Tanta, Egypt
4Academy of Scientific Research and Technology (ASRT), Cairo, Egypt
5Department of Physics, Faculty of Science, Port Said University, 42521 Port Said, Egypt
6Centre for Theoretical Physics, The British University in Egypt (BUE), 43 El-Shorouk City, Cairo, Egypt

Tài liệu tham khảo

Afify, 2018, Optimum performance of electron beam pumped GaAs and GaN, Phys Plasmas, 25, 052116, 10.1063/1.5020428 Barabash, 2007, The loss of ions from Venus through the plasma wake, Nature, 450, 650, 10.1038/nature06434 Barabash, 2007, The analyser of space plasmas and energetic atoms (ASPERA-4) for the Venus express mission, Planet. Space Sci., 55, 1772, 10.1016/j.pss.2007.01.014 Behlke, 2004, Solitary structures associated with short large-amplitude magnetic structures (SLAMS) upstream of the Earth’s quasi-parallel bow shock, Geophys. Res. Lett., 31, 16805, 10.1029/2004GL019524 Colin, 1980, The Pioneer Venus program, J. Geophys. Res. Space Phys., 85, 7575, 10.1029/JA085iA13p07575 Ergun, 1998, Debye-scale plasma structures associated with magnetic-field-aligned electric fields, Phys. Rev. Lett., 81, 826, 10.1103/PhysRevLett.81.826 Gurnett, 1991, Lightning and plasma wave observations from the Galileo flyby of Venus, Science., 253, 1522, 10.1126/science.253.5027.1522 Hutchinson, 2017, Electron holes in phase space: What they are and why they matter, Phys. Plasmas, 24, 055601, 10.1063/1.4976854 Intrilligator, 1980, The Pioneer Venus orbiter plasma analyzer experiment, IEEE Trans. Geosci. Remote Sens. GE-, 18, 39, 10.1109/TGRS.1980.350258 Kerzhanovich, 1980, Venera 11 and Venera 12: preliminary evaluations of wind velocity and turbulence in the atmosphere of Venus, Earth Moon Planets, 23, 261, 10.1007/BF00902043 Korteweg, 1895, XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag., 39, 422, 10.1080/14786449508620739 Krall, 1973 Lundin, 2011, Ion acceleration and outflow from Mars and Venus: an overview, Space Sci Rev, 162, 309, 10.1007/s11214-011-9811-y Lakhina, 2011, Generation of electrostatic solitary waves in the plasma sheet boundary layer, J. Geophys. Res., 116, A10218 Lakhina, 2014, Ion acoustic solitons/double layers in two-ion plasma, Phys. Plasmas, 21, 062311, 10.1063/1.4884791 Lakhina, 2015, Ion acoustic solitons and double layers in the solar wind, Solar Phys., 290, 3033, 10.1007/s11207-015-0773-1 Lakhina, G.S., Singh, S., 2017, Solitary waves in plasmas described by kappa distributions, p. 399–420, Kappa Distributions: Theory and Applications in Plasmas, George Livadiotis (Ed.), Elsevier Inc., Oxford. Lakhina, 2018, A review of nonlinear fluid models for ion-and electron-Acoustic solitons and double layers: application to weak double layers and electrostatic solitary waves in the solar wind and the lunar wake, Phys. Plasmas, 25, 080501, 10.1063/1.5033498 Maharaj, 2015, Existence domains of slow and fast ion-acoustic solitons in two-ion space plasmas, Phys. Plasmas, 22, 032313, 10.1063/1.4916319 Marov, 1998 Matsumoto, 1994, Electrostatic solitary waves (ESW) in the magnetotail: BEN wave forms observed by GEOTAIL, Geophys. Res. Lett., 21, 2915, 10.1029/94GL01284 Mbuli, 2015, Arbitrary amplitude slow electron-acoustic and ion-acoustic solitons in three-electron temperature space plasmas, Phys. Plasmas, 22, 062307, 10.1063/1.4922683 Pickett, 2005, Nonlinear Proc. Geoph., 12, 181, 10.5194/npg-12-181-2005 Rubia, 2016, Existence domains of electrostatic solitary structures in the solar wind plasma, Phys. Plasmas, 23, 062902, 10.1063/1.4953892 Rubia, 2017, Occurrence of electrostatic solitary waves in the lunar wake, J. Geophys. Res. Space Phys., 122, 9134, 10.1002/2017JA023972 Rubia, 2018, Existence domain of electrostatic solitary waves in the lunar wake, Phys. Plasmas, 25, 032302, 10.1063/1.5017638 Russell, 2013, Venus Express observations of ULF and ELF waves in the Venus ionosphere: Wave properties and sources, Icarus, 226, 1527, 10.1016/j.icarus.2013.08.019 Russell, 1990, Evidence for lightning on Venus, Adv. Space Res, 10, 125, 10.1016/0273-1177(90)90173-W Salem, 2020, Ionospheric losses of Venus in the solar wind, Adv. Space Res., 65, 129, 10.1016/j.asr.2019.09.032 Sayed, 2020, Nonlinear ion-acoustic waves at Venus ionosphere, Adv. Space Res., 66, 1276, 10.1016/j.asr.2020.06.023 Scarf, 1980, Lightning on Venus: Orbiter detection of whistler signals, J. Geophys. Res. Space Phys., 85, 8158, 10.1029/JA085iA13p08158 Schamel, 2012, Cnoidal electron hole propagation: Trapping, the forgotten nonlinearity in plasma and fluid dynamics, Phys. Plasmas, 19, 020501, 10.1063/1.3682047 Sreeraj, 2016, Coupling of ion-cyclotron and ion-acoustic waves in solar wind plasmas, Phys. Plasmas, 23, 082901, 10.1063/1.4960657 Sreeraj, 2018, Electrostatic waves driven by electron beam in lunar wake plasma, Phys. Plasmas, 25, 052902, 10.1063/1.5032141 Strangeway, 1991, Plasma waves at Venus, Space Sci. Rev., 55, 275, 10.1007/BF00177139 Strangeway, 1993, Observation of intense wave bursts at very low altitudes within the Venus nightside ionosphere, Geophys. Res. Lett, 20, 2771, 10.1029/93GL02702 Strangeway, 2004, Plasma waves and electromagnetic radiation at Venus and Mars, Adv. Space Res, 33, 1956, 10.1016/j.asr.2003.08.040 Titov, 2009, Venus express: Highlights of the nominal mission, Sol. Syst. Res., 43, 185, 10.1134/S0038094609030010 Washimi, 1966, Propagation of ion-acoustic solitary waves of small amplitude, Phys. Rev. Lett., 17, 996, 10.1103/PhysRevLett.17.996 Williams, 2006, Electrostatic solitary structures observed at Saturn, Geophys. Res. Lett., 33, L06103, 10.1029/2005GL024532