Evolution of in vivo dopamine monitoring techniques

Pharmacology Biochemistry and Behavior - Tập 200 - Trang 173078 - 2021
Alyssa G. Yocky1, Dan P. Covey1
1Department of Neuroscience, Lovelace Biomedical Research Institute, Albuquerque, NM, USA

Tài liệu tham khảo

Augustine, 2003, Local calcium signaling in neurons, Neuron, 40, 331, 10.1016/S0896-6273(03)00639-1 Berges, 2007, Transduction of brain by herpes simplex virus vectors, Mol. Ther., 15, 20, 10.1038/sj.mt.6300018 Birkmayer, 1961, The effect of 3,4-dihydroxyphenylalanine (L DOPA) on Parkinsonian akinesia, Wein Klin Wochenschr., 73, 787 Brimblecombe, 2015, Gating of dopamine transmission by calcium and axonal N-, Q-, T- and L-type voltage-gated calcium channels differs between striatal domains, J. Physiol., 593, 929, 10.1113/jphysiol.2014.285890 Brown, 2010, Drug-driven AMPA receptor redistribution mimicked by selective dopamine neuron stimulation, PLoS One, 5, 10.1371/journal.pone.0015870 Brown, 2011, Primary food reward and reward-predictive stimuli evoke different patterns of phasic dopamine signaling throughout the striatum, Eur. J. Neurosci., 34, 1997, 10.1111/j.1460-9568.2011.07914.x Bruno, 2020 Cachope, 2014, Local control of striatal dopamine release, Front. Behav. Neurosci., 8, 188, 10.3389/fnbeh.2014.00188 Carboni, 1989, 28, 653 Carlsson, 1959, The occurrence, distribution, and physiological role of catecholamines in the nervous system, Pharmacol. Rev., 2, 490 Carlsson, 1958, On the presence of 3-hydroxytyramine in brain, Science, 127, 471, 10.1126/science.127.3296.471 Chen, 2011, Differential calcium dependence of axonal versus somatodendritic dopamine release, with characteristics of both in the ventral tegmental area, Front. Syst. Neurosci., 5, 39, 10.3389/fnsys.2011.00039 Chen, 2013, 499, 295 Clark, 2010, Chronic microsensors for longitudinal, subsecond dopamine detection in behaving animals, Nat. Methods, 7, 126, 10.1038/nmeth.1412 Cohen, 2012, Neuron-type-specific signals for reward and punishment in the ventral tegmental area, Nature, 482, 85, 10.1038/nature10754 Covey, 2013, Amphetamine elicits opposing actions on readily releasable and reserve pools for dopamine, PLoS One, 8, 10.1371/journal.pone.0060763 Covey, 2014, Illicit dopamine transients: reconciling actions of abused drugs, Trends Neurosci., 37, 200, 10.1016/j.tins.2014.02.002 Da Silva, 2018, Dopamine neuron activity before action initiation gates and invigorates future movements, Nature, 554, 244, 10.1038/nature25457 Daigle, 2018, A suite of transgenic driver and reporter mouse lines with enhanced brain-cell-type targeting and functionality, Cell, 174, 465, 10.1016/j.cell.2018.06.035 Dana, 2016, Sensitive red protein calcium indicators for imaging neural activity, Elife, 5, 10.7554/eLife.12727 Dana, 2019, High-performance calcium sensors for imaging activity in neuronal populations and microcompartments, Nat. Methods, 16, 649, 10.1038/s41592-019-0435-6 Day, 2010, Phasic nucleus accumbens dopamine release encodes effort- and delay-related costs, Biol. Psychiatry, 68, 306, 10.1016/j.biopsych.2010.03.026 de Groot, 2020, Ninscope, a versatile miniscope for multi-region circuit investigations, Elife, 9, 10.7554/eLife.49987 de Jong, 2019, A neural circuit mechanism for encoding aversive stimuli in the mesolimbic dopamine system, Neuron, 101, 133, 10.1016/j.neuron.2018.11.005 DeNardo, 2017, Genetic strategies to access activated neurons, Curr. Opin. Neurobiol., 45, 121, 10.1016/j.conb.2017.05.014 Di Chiara, 1988, Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats, Neurobiology, 85, 5274 Ehringer, 1960, Distribution of noradrenaline and dopamine (3-hydroxytyramine) in the human brain and their behavior in diseases of the extrapyramidal system, Klinische Wochenschrift, 38, 1236, 10.1007/BF01485901 Emiliani, 2015, All-optical interrogation of neural circuits, J. Neurosci., 35, 13917, 10.1523/JNEUROSCI.2916-15.2015 Ferris, 2013, Examining the complex regulation and drug-induced plasticity of dopamine release and uptake using voltammetry in brain slices, ACS Chem. Neurosci., 4, 693, 10.1021/cn400026v Ferris, 2014, Dopamine transporters govern diurnal variation in extracellular dopamine tone, Proc. Natl. Acad. Sci. U. S. A., 111, E2751, 10.1073/pnas.1407935111 Fiorillo, 2013, Two dimensions of value: dopamine neurons represent reward but not aversiveness, Science, 341, 546, 10.1126/science.1238699 Flagel, 2011, A selective role for dopamine in stimulus-reward learning, Nature, 469, 53, 10.1038/nature09588 Ghosh, 2011, Miniaturized integration of a fluorescence microscope, Nat. Methods, 8, 871, 10.1038/nmeth.1694 Glimcher, 2011, Understanding dopamine and reinforcement learning: the dopamine reward prediction error hypothesis, Proc. Natl. Acad. Sci. U. S. A., 108, 15647, 10.1073/pnas.1014269108 Grace, 1984, The control of firing pattern in nigral dopamine neurons: single spike firing, J. Neurosci., 4, 2866, 10.1523/JNEUROSCI.04-11-02866.1984 Grace, 1984, The control of firing pattern in nigral dopamine neurons: burst firing, J. Neurosci., 4, 2877, 10.1523/JNEUROSCI.04-11-02877.1984 Grienberger, 2012, Imaging calcium in neurons, Neuron, 73, 862, 10.1016/j.neuron.2012.02.011 Gubernator, 2009, Fluorescent false neurotransmitters visualize dopamine release from individual presynaptic terminals, Science, 324, 1441, 10.1126/science.1172278 Haggerty, 2020, Adeno-associated viral vectors in neuroscience research, Mol Ther - Methods Clin Dev, 17, 69, 10.1016/j.omtm.2019.11.012 Hillarp, 1966, Demonstration and mapping of central neurons containing dopamine, noradrenaline, and 5-hydroxytryptamine and their reactions to psychopharmaca, Pharmacol. Rev., 18, 727 Howe, 2016, Rapid signalling in distinct dopaminergic axons during locomotion and reward, Nature, 535, 505, 10.1038/nature18942 Iversen, 2010 Jacob, 2018, A compact head-mounted endoscope for in vivo calcium imaging in freely behaving mice, Curr Protoc Neurosci., 84, 10.1002/cpns.51 Jayant, 2019, Flexible nanopipettes for minimally invasive intracellular electrophysiology in vivo, Cell Rep., 26, 266, 10.1016/j.celrep.2018.12.019 Jing, 2019, G-protien-coupled receptor-based sensors for imaging neurochemicals with high sensitivity and specificity, J. Neurochem., 151, 279, 10.1111/jnc.14855 Jones, 1998, 95, 4029 Junyent, 2015, CAV-2 - why a canine virus is a neurobiologist’s best friend, Curr. Opin. Pharmacol., 24, 86, 10.1016/j.coph.2015.08.004 Kim, 2016, Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain, Nat. Methods, 13, 325, 10.1038/nmeth.3770 Kishida, 2016, Subsecond dopamine fluctuations in human striatum encode superposed error signals about actual and counterfactual reward, Proc. Natl. Acad. Sci. U. S. A., 113, 200, 10.1073/pnas.1513619112 Kissinger, 1973, Voltammetry in brain tissue - a new neurophysiological measurement, Brain Res., 55, 209, 10.1016/0006-8993(73)90503-9 Klawonn, 2018, Nucleus accumbens modulation in reward and aversion, Cold Spring Harb. Symp. Quant. Biol., 83, 119, 10.1101/sqb.2018.83.037457 Lada, 1996, Quantitative in vivo monitoring of primary amines in rat caudate nucleus using microdialysis coupled by a flow-gated Interface to capillary electrophoresis with laser-induced fluorescence detection, Anal. Chem., 68, 2790, 10.1021/ac960178x Lak, 2014, Dopamine prediction error responses integrate subjective value from different reward dimensions, Proc. Natl. Acad. Sci. U. S. A., 111, 2343, 10.1073/pnas.1321596111 Lammel, 2008, Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system, Neuron, 57, 760, 10.1016/j.neuron.2008.01.022 Lee, 2017, Temporally precise labeling and control of neuromodulatory circuits in the mammalian brain, Nat. Methods, 14, 495, 10.1038/nmeth.4234 Lerner, 2015, Intact-brain analyses reveal distinct information carried by SNc dopamine subcircuits, Cell., 162, 635, 10.1016/j.cell.2015.07.014 Li, 2010, Fraction collection from capillary liquid chromatography and off-line electrospray ionization mass spectrometry using oil segmented flow, Anal. Chem., 82, 5260, 10.1021/ac100669z Liberti, 2017, An open source, wireless capable miniature microscope system, J. Neural Eng., 14, 10.1088/1741-2552/aa6806 London, 2018, Coordinated ramping of dorsal striatal pathways preceding food approach and consumption, J. Neurosci., 38, 3547, 10.1523/JNEUROSCI.2693-17.2018 Malvaut, 2020, Deciphering brain function by miniaturized fluorescence microscopy in freely behaving animals, Front. Neurosci., 14, 10.3389/fnins.2020.00819 Menegas, 2017, Opposite initialization to novel cues in dopamine signaling in ventral and posterior striatum in mice, Elife, 6, 10.7554/eLife.21886 Menegas, 2018, Dopamine neurons projecting to the posterior striatum reinforce avoidance of threatening stimuli, Nat. Neurosci., 21, 1421, 10.1038/s41593-018-0222-1 Mogenson, 1980, From motivation to action: functional interface between the limbic system and the motor system, Prog. Neurobiol., 14, 69, 10.1016/0301-0082(80)90018-0 Mohebi, 2019, Dissociable dopamine dynamics for learning and motivation, Nature, 570, 65, 10.1038/s41586-019-1235-y Montagu, 1957, Catechol compounds in rat tissues and in brains of different animals, Nature, 180, 244, 10.1038/180244a0 Montague, 1996, A framework for mesencephalic dopamine systems based on predictive Hebbian learning, J. Neurosci., 16, 1936, 10.1523/JNEUROSCI.16-05-01936.1996 Morales, 2017, Ventral tegmental area: cellular heterogeneity, connectivity and behaviour, Nat. Rev. Neurosci., 18, 73, 10.1038/nrn.2016.165 Nakai, 2001, A high signal-to-noise Ca 2+ probe composed of a single green flourescent protein, Nat. Biotechnol., 19, 137, 10.1038/84397 Niv, 2007, Tonic dopamine: opportunity costs and the control of response vigor, Psychopharmacology, 191, 507, 10.1007/s00213-006-0502-4 Oleson, 2012, Subsecond dopamine release in the nucleus accumbens predicts conditioned punishment and its successful avoidance, J. Neurosci., 32, 14804, 10.1523/JNEUROSCI.3087-12.2012 Owen, 2019, An open-source control system for in vivo fluorescence measurements from deep-brain structures, J. Neurosci. Methods, 311, 170, 10.1016/j.jneumeth.2018.10.022 Parker, 2016, Reward and choice encoding in terminals of midbrain dopamine neurons depends on striatal target, Nat. Neurosci., 19, 845, 10.1038/nn.4287 Patriarchi, 2018, Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors, Science, 360 Patriarchi, 2020, An expanded palette of dopamine sensors for multiplex imaging in vivo, Nat. Methods, 1 Pereira, 2016, Fluorescent false neurotransmitter reveals functionally silent dopamine vesicle clusters in the striatum, Nat. Neurosci., 19, 578, 10.1038/nn.4252 Phillips, 2000, 884, 139 Phillips, 2003, Subsecond dopamine release promotes cocaine seeking, Nature, 422, 614, 10.1038/nature01476 Pisanello, 2019, The three-dimensional signal collection field for fiber photometry in brain tissue, Front. Neurosci., 13, 82, 10.3389/fnins.2019.00082 Plummer, 2015, Expanding the power of recombinase-based labeling to uncover cellular diversity, Development, 142, 4385, 10.1242/dev.129981 Poulin, 2018, Mapping projections of molecularly defined dopamine neuron subtypes using intersectional genetic approaches, Nat. Neurosci., 21, 1260, 10.1038/s41593-018-0203-4 Reed, 2002, Gradient-index fiber-optic microprobes for minimally invasive in vivo low-coherence interferometry, Opt. Lett., 27, 1794, 10.1364/OL.27.001794 Rescorla, 1972, A theory of Pavlovian conditioning: variations in the effectiveness of reinforcement and nonreinforcement, Current research and theory., 64 Robinson, 2002, 22, 10477 Robinson, 2008, Monitoring rapid chemical communication in the brain, Chem. Rev., 108, 2554, 10.1021/cr068081q Rodeberg, 2017, Hitchhiker’s guide to voltammetry: acute and chronic electrodes for in vivo fast-scan cyclic voltammetry, ACS Chem. Neurosci., 8, 221, 10.1021/acschemneuro.6b00393 Roitman, 2008, Real-time chemical responses in the nucleus accumbens differentiate rewarding and aversive stimuli, Nat. Neurosci., 11, 1376, 10.1038/nn.2219 Sanghavi, 2015, Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters, Microchim. Acta, 182, 1, 10.1007/s00604-014-1308-4 Sano, 1959, Distribution of catechol compounds in human brain, Biochim. Biophys. Acta, 32, 586, 10.1016/0006-3002(59)90652-3 Saunders, 2018, Dopamine neurons create Pavlovian conditioned stimuli with circuit-defined motivational properties, Nat. Neurosci., 21, 1072, 10.1038/s41593-018-0191-4 Schultz, 1986, Responses of midbrain dopamine neurons to behavioral trigger stimuli in the monkey, J. Neurophysiol., 56, 1439, 10.1152/jn.1986.56.5.1439 Schultz, 1998, Predictive reward signal of dopamine neurons, J. Neurophysiol., 80, 1, 10.1152/jn.1998.80.1.1 Schwarz, 2015, Viral-genetic tracing of the input-output organization of a central noradrenaline circuit, Nature, 7563, 88, 10.1038/nature14600 Schwerdt, 2017, Long-term dopamine neurochemical monitoring in primates, Proc. Natl. Acad. Sci. U. S. A., 114, 13260, 10.1073/pnas.1713756114 Schwerdt, 2018, Cellular-scale probes enable stable chronic subsecond monitoring of dopamine neurochemicals in a rodent model, Commun Biol, 1, 1, 10.1038/s42003-018-0147-y Sheintuch, 2017, Tracking the same neurons across multiple days in Ca2+ imaging data, Cell Rep., 21, 1102, 10.1016/j.celrep.2017.10.013 Siciliano, 2019, Leveraging calcium imaging to illuminate circuit dysfunction in addiction, Alcohol., 74, 47, 10.1016/j.alcohol.2018.05.013 Simone, 2018, Open-source, cost-effective system for low-light in vivo fiber photometry, Neurophotonics, 5, 10.1117/1.NPh.5.2.025006 Song, 2012, Mass spectrometry ‘sensor’ for in vivo acetylcholine monitoring, Anal. Chem., 84, 4659, 10.1021/ac301203m Sun, 2018, A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice, Cell., 174, 481, 10.1016/j.cell.2018.06.042 Sun, 2020 Swanson, 1982, The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat, Brain Res. Bull., 9, 321, 10.1016/0361-9230(82)90145-9 Tervo, 2016, A designer AAV variant permits efficient retrograde access to projection neurons, Neuron, 92, 372, 10.1016/j.neuron.2016.09.021 Theis, 2016, Benchmarking spike rate inference in population calcium imaging, Neuron, 90, 471, 10.1016/j.neuron.2016.04.014 Tian, 2009, Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators, Nat. Methods, 6, 875, 10.1038/nmeth.1398 Tian, 2012, Imaging neuronal activity with genetically encoded calcium indicators, Cold Spring Harb Protoc, 2012, 10.1101/pdb.top069609 Ungerstedt, 1971, Postsynaptic supersensitivity after 6-hydroxy-dopamine induced degeneration of the Nigro-striatal dopamine system, Acta Physiol. Scand., 82, 69, 10.1111/j.1365-201X.1971.tb11000.x Ungerstedt, 1974, Functional correlates of dopamine neurotransmission, Bull Schweiz Akad Med Wiss., 30, 44 Ungless, 2012, Are you or aren’t you? Challenges associated with physiologically identifying dopamine neurons, Trends Neurosci., 35, 422, 10.1016/j.tins.2012.02.003 Ungless, 2004, Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli, Science, 303, 2040, 10.1126/science.1093360 Voigts, 2013, The flexDrive: an ultra-light implant for optical control and highly parallel chronic recording of neuronal ensembles in freely moving mice, Front. Syst. Neurosci., 7 Voigts, 2020, An easy-to-assemble, robust, and lightweight drive implant for chronic tetrode recordings in freely moving animals, J. Neural Eng., 17, 10.1088/1741-2552/ab77f9 Wang, 2008, Improved temporal resolution for in vivo microdialysis by using segmented flow, Anal. Chem., 80, 5607, 10.1021/ac800622s Wang, 2010, Collection of nanoliter microdialysate fractions in plugs for off-line in vivo chemical monitoring with up to 2s temporal resolution, J. Neurosci. Methods, 190, 39, 10.1016/j.jneumeth.2010.04.023 Watabe-Uchida, 2012, Whole-brain mapping of direct inputs to midbrain dopamine neurons, Neuron, 74, 858, 10.1016/j.neuron.2012.03.017 Wickersham, 2007, Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons, Neuron, 53, 639, 10.1016/j.neuron.2007.01.033 Wightman, 1988, Real-time characterization of dopamine overflow and uptake in the rat striatum, Neuroscience, 25, 513, 10.1016/0306-4522(88)90255-2 Willuhn, 2012, Hierarchical recruitment of phasic dopamine signaling in the striatum during the progression of cocaine use, Proc. Natl. Acad. Sci. U. S. A., 109, 20703, 10.1073/pnas.1213460109 Wu, 2001, Determination of release and uptake parameters from electrically evoked dopamine dynamics measured by real-time voltammetry, J. Neurosci. Methods, 112, 119, 10.1016/S0165-0270(01)00459-9 Yang, 2015, Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: a review, Anal. Chim. Acta, 887, 17, 10.1016/j.aca.2015.05.049 Zhang, 2009, Controls of tonic and phasic dopamine transmission in the dorsal and ventral striatum, Mol. Pharmacol., 76, 396, 10.1124/mol.109.056317