Evolution of eukaryotic centromeres by drive and suppression of selfish genetic elements

Seminars in Cell & Developmental Biology - Tập 128 - Trang 51-60 - 2022
Tomohiro Kumon1, Michael A. Lampson2
1Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
2Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA

Tài liệu tham khảo

Abe, 2016, HP1-assisted Aurora B kinase activity prevents chromosome segregation errors, Dev. Cell, 36, 487, 10.1016/j.devcel.2016.02.008 Ainsztein, 1998, INCENP centromere and spindle targeting: identification of essential conserved motifs and involvement of heterochromatin protein HP1, J. Cell Biol., 143, 1763, 10.1083/jcb.143.7.1763 Akera, 2017, Spindle asymmetry drives non-Mendelian chromosome segregation, Science, 358, 668, 10.1126/science.aan0092 Akera, 2019, Molecular strategies of meiotic cheating by selfish centromeres, Cell, 178, 1132, 10.1016/j.cell.2019.07.001 Akiyoshi, 2014, Discovery of unconventional kinetochores in kinetoplastids, Cell, 156, 1247, 10.1016/j.cell.2014.01.049 Amor, 2004, Human centromere repositioning “in progress”, Proc. Natl. Acad. Sci. USA, 101, 6542, 10.1073/pnas.0308637101 Arora, 2021, Population and subspecies spanersity at mouse centromere satellites, BMC Genom., 22, 279, 10.1186/s12864-021-07591-5 Badrinarayanan, 2015, Bacterial chromosome organization and segregation, Annu. Rev. Cell Dev. Biol., 31, 171, 10.1146/annurev-cellbio-100814-125211 Barillà, 2016, Driving apart and segregating genomes in Archaea, Trends Microbiol., 24, 957, 10.1016/j.tim.2016.07.001 Bensasson, 2008, Rapid evolution of yeast centromeres in the absence of drive, Genetics, 178, 2161, 10.1534/genetics.107.083980 Black, 2011, Epigenetic centromere propagation and the nature of CENP-A nucleosomes, Cell, 144, 471, 10.1016/j.cell.2011.02.002 Burt, 2006 Cam, 2007, Host genome surveillance for retrotransposons by transposon-derived proteins, Nature, 451, 431, 10.1038/nature06499 Camacho, 2000, B-chromosome evolution, Philos. Trans. R. Soc. Lond. Ser. B: Biol. Sci., 355, 163, 10.1098/rstb.2000.0556 Casola, 2007, Convergent domestication of pogo-like transposases into centromere-binding proteins in fission yeast and mammals, Mol. Biol. Evol., 25, 29, 10.1093/molbev/msm221 Cazaux, 2013, Evolution of the structure and composition of house mouse satellite DNA sequences in the subgenus Mus (Rodentia: Muridea): a cytogenomic approach, Chromosoma, 122, 209, 10.1007/s00412-013-0402-4 Chang, 2019, Islands of retroelements are major components of Drosophila centromeres, PLoS Biol., 17, 10.1371/journal.pbio.3000241 Cheerambathur, 2019, The kinetochore-microtubule coupling machinery is repurposed in sensory nervous system morphogenesis, Dev. Cell, 48, 864, 10.1016/j.devcel.2019.02.002 Chmátal, 2014, Centromere strength provides the cell biological basis for meiotic drive and karyotype evolution in mice, Curr. Biol., 24, 2295, 10.1016/j.cub.2014.08.017 Chmátal, 2017, Cell biology of cheating—transmission of centromeres and other selfish elements through asymmetric meiosis, 377 Chueh, 2009, LINE retrotransposon RNA is an essential structural and functional epigenetic component of a core neocentromeric chromatin, PLoS Genet., 5, 10.1371/annotation/3b497aec-b7d3-442e-9086-751251f649dd Crowder, 2015, A comparative analysis of spindle morphometrics across Metazoans, Curr. Biol., 25, 1542, 10.1016/j.cub.2015.04.036 Cuacos, 2015, Atypical centromeres in plants—what they can tell us, Front. Plant Sci., 6, 913, 10.3389/fpls.2015.00913 Dawe, 2004, Plant neocentromeres: fast, focused, and driven, Chromosome Res., 12, 655, 10.1023/B:CHRO.0000036607.74671.db Dawe, 2018, A kinesin-14 motor activates neocentromeres to promote meiotic drive in maize, Cell, 173, 839, 10.1016/j.cell.2018.03.009 Dover, 1986, Molecular drive in multigene families: how biological novelties arise, spread and are assimilated, Trends Genet., 2, 159, 10.1016/0168-9525(86)90211-8 Drinnenberg, 2014, Recurrent loss of CenH3 is associated with independent transitions to holocentricity in insects, eLife, 3, 10.7554/eLife.03676 Drinnenberg, 2016, Evolutionary turnover of kinetochore proteins: a ship of theseus?, Trends Cell Biol., 26, 498, 10.1016/j.tcb.2016.01.005 Drpic, 2018, Chromosome segregation is biased by kinetochore size, Curr. Biol., 28, 1344, 10.1016/j.cub.2018.03.023 Dumont, 2010, A kinetochore-independent mechanism drives anaphase chromosome separation during acentrosomal meiosis, Nat. Cell Biol., 12, 894, 10.1038/ncb2093 Earnshaw, 2015, Discovering centromere proteins: from cold white hands to the A, B, C of CENPs, Nat. Rev. Mol. Cell Biol., 16, 443, 10.1038/nrm4001 ENCODE Project Consortium, 2020, Expanded encyclopaedias of DNA elements in the human and mouse genomes, Nature, 583, 699, 10.1038/s41586-020-2493-4 Fachinetti, 2015, DNA sequence-specific binding of CENP-B enhances the fidelity of human centromere function, Dev. Cell, 33, 314, 10.1016/j.devcel.2015.03.020 Fekete, 2005, A cis-acting sequence involved in chromosome segregation in Escherichia coli, Mol. Microbiol., 55, 175, 10.1111/j.1365-2958.2004.04392.x Finseth, 2015, Duplication and adaptive evolution of a key centromeric protein in Mimulus, a genus with female meiotic drive, Mol. Biol. Evol., 32, 2694, 10.1093/molbev/msv145 Finseth, 2021, Selfish chromosomal drive shapes recent centromeric histone evolution in monkeyflowers, PLoS Genet., 17, 10.1371/journal.pgen.1009418 Fishman, 2015, Centromere-associated meiotic drive and female fitness variation in Mimulus, Evolution, 69, 1208, 10.1111/evo.12661 Fishman, 2008, Centromere-associated female meiotic drive entails male fitness costs in monkeyflowers, Science, 322, 1559, 10.1126/science.1161406 Gamba, 2020, From evolution to function: two sides of the same CENP-B coin?, Exp. Cell Res., 390, 10.1016/j.yexcr.2020.111959 Gao, 2020, Evolution of pogo, a separate superfamily of IS630-Tc1-mariner transposons, revealing recurrent domestication events in vertebrates, Mob. DNA, 11, 25, 10.1186/s13100-020-00220-0 Garrido-Ramos, 2017, Satellite DNA: an evolving topic, Genes, 8, 230, 10.3390/genes8090230 Gibbs, 2004, Genome sequence of the Brown Norway rat yields insights into mammalian evolution, Nature, 428, 493, 10.1038/nature02426 Gibeaux, 2018, Paternal chromosome loss and metabolic crisis contribute to hybrid inviability in Xenopus, Nature, 553, 337, 10.1038/nature25188 Giménez, 2016, Empirical demonstration of hybrid chromosomal races in house mice, Evolution, 70, 1651, 10.1111/evo.12970 Goday, 1989, Centromere organization in meiotic chromosomes of Parascaris univalens, Chromosoma, 98, 160, 10.1007/BF00329679 Goday, 1992, Kinetochores and chromatin diminution in early embryos of Parascaris univalens, J. Cell Biol., 118, 23, 10.1083/jcb.118.1.23 Gorelick, 2016, No universal differences between female and male eukaryotes: anisogamy and asymmetrical female meiosis, Biol. J. Linn. Soc., 120, 1 Gutbrod, 2020, Conserved chromosomal functions of RNA interference, Nat. Rev. Genet., 21, 311, 10.1038/s41576-019-0203-6 Hasson, 2011, Formation of novel CENP-A domains on tandem repetitive DNA and across chromosome breakpoints on human chromosome 8q21 neocentromeres, Chromosoma, 120, 621, 10.1007/s00412-011-0337-6 Henikoff, 2001, The centromere paradox: stable inheritance with rapidly evolving DNA, Science, 293, 1098, 10.1126/science.1062939 Hewitt, 1976, Meiotic drive for B-chromosomes in the primary oocytes of Myrmekotettix maculatus (Orthoptera: Acrididae), Chromosoma, 56, 381, 10.1007/BF00292957 Higgins, 2016, Mitotic mysteries: the case of HP1, Dev. Cell, 36, 477, 10.1016/j.devcel.2016.02.019 Hooff, 2017, Unique phylogenetic distributions of the Ska and Dam1 complexes support functional analogy and suggest multiple parallel displacements of Ska by Dam1, Genome Biol. Evol., 9, 1295, 10.1093/gbe/evx088 Hudson, 1998, Centromere protein B null mice are mitotically and meiotically normal but have lower body and testis weights, J. Cell Biol., 141, 309, 10.1083/jcb.141.2.309 Hughes-Schrader, 1961, The kinetochore of the hemiptera, Chromosoma, 12, 327, 10.1007/BF00328928 International Human Genome Sequencing Consortium, 2001, Initial sequencing and analysis of the human genome, Nature, 409, 860, 10.1038/35057062 Ishii, 2008, Heterochromatin integrity affects chromosome reorganization after centromere dysfunction, Science, 321, 1088, 10.1126/science.1158699 Iwata-Otsubo, 2017, Expanded satellite repeats amplify a discrete CENP-A nucleosome assembly site on chromosomes that drive in female meiosis, Curr. Biol., 27, 2365, 10.1016/j.cub.2017.06.069 Janssen, 2018, Heterochromatin: guardian of the genome, Annu. Rev. Cell Dev. Biol., 34, 265, 10.1146/annurev-cellbio-100617-062653 Javed, 2018, Microcephaly modeling of kinetochore mutation reveals a brain-specific phenotype, Cell Rep., 25, 368, 10.1016/j.celrep.2018.09.032 Jones, 1991, B-chromosome drive, Am. Nat., 137, 430, 10.1086/285175 Jun, 2006, Entropy-driven spatial organization of highly confined polymers: lessons for the bacterial chromosome, Proc. Natl. Acad. Sci. USA, 103, 12388, 10.1073/pnas.0605305103 Jun, 2010, Entropy as the driver of chromosome segregation, Nat. Rev. Microbiol., 8, 600, 10.1038/nrmicro2391 Kang, 2011, Mitotic centromeric targeting of HP1 and its binding to Sgo1 are dispensable for sister-chromatid cohesion in human cells, Mol. Biol. Cell, 22, 1181, 10.1091/mbc.e11-01-0009 Kang, 2016, Differential chromosomal localization of centromeric histone CENP-A contributes to nematode programmed DNA elimination, Cell Rep., 16, 2308, 10.1016/j.celrep.2016.07.079 Kapoor, 1998, The cenpB gene is not essential in mice, Chromosoma, 107, 570, 10.1007/s004120050343 Kipling, 1997, Centromeres, CENP-B and tigger too, Trends Genet., 13, 141, 10.1016/S0168-9525(97)01098-6 Kumon, 2021, Parallel pathways for recruiting effector proteins determine centromere drive and suppression, Cell, 184, 4904, 10.1016/j.cell.2021.07.037 Lampson, 2017, Cellular and molecular mechanisms of centromere drive, Cold Spring Harb. Symp. Quant. Biol., 82, 249, 10.1101/sqb.2017.82.034298 Langley, 2019, Haplotypes spanning centromeric regions reveal persistence of large blocks of archaic DNA, eLife, 8, 10.7554/eLife.42989 Lenormand, 2016, Evolutionary mysteries in meiosis, Philos. Trans. R. Soc. B: Biol. Sci., 371, 10.1098/rstb.2016.0001 Locke, 2011, Comparative and demographic analysis of orang-utan genomes, Nature, 469, 529, 10.1038/nature09687 Logsdon, 2019, Human artificial chromosomes that bypass centromeric DNA, Cell, 178, 624, 10.1016/j.cell.2019.06.006 Luchetti, 2003, Unisexuality and molecular drive: Bag320 sequence diversity in Bacillus taxa (Insecta Phasmatodea), J. Mol. Evol., 56, 587, 10.1007/s00239-002-2427-9 Malik, 2001, Adaptive evolution of Cid, a centromere-specific histone in Drosophila, Genetics, 157, 1293, 10.1093/genetics/157.3.1293 Malik, 2009, Major evolutionary transitions in centromere complexity, Cell, 138, 1067, 10.1016/j.cell.2009.08.036 Mallarino, 2018, African striped mice, Curr. Biol., 28, R299, 10.1016/j.cub.2018.02.009 Mandrioli, 2020, Holocentric chromosomes, PLoS Genet., 16, 10.1371/journal.pgen.1008918 Mantovani, 1997, The Bag320 satellite DNA family in Bacillus stick insects (Phasmatodea): different rates of molecular evolution of highly repetitive DNA in bisexual and parthenogenic taxa, Mol. Biol. Evol., 14, 1197, 10.1093/oxfordjournals.molbev.a025729 Marshall, 2008, Neocentromeres: new insights into centromere structure, disease development, and karyotype evolution, Am. J. Hum. Genet., 82, 261, 10.1016/j.ajhg.2007.11.009 Marston, 2015, Shugoshins: tension-sensitive pericentromeric adaptors safeguarding chromosome segregation, Mol. Cell. Biol., 35, 634, 10.1128/MCB.01176-14 Mateo, 2014, Pogo-like transposases have been repeatedly domesticated into CENP-B-related proteins, Genome Biol. Evol., 6, 2008, 10.1093/gbe/evu153 Melters, 2013, Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution, Genome Biol., 14, R10, 10.1186/gb-2013-14-1-r10 Molina, 2014, Evidence for meiotic drive as an explanation for karyotype changes in fishes, Mar. Genom., 15, 29, 10.1016/j.margen.2014.05.001 Monen, 2005, Differential role of CENP-A in the segregation of holocentric C. elegans chromosomes during meiosis and mitosis, Nat. Cell Biol., 7, 1248, 10.1038/ncb1331 Nakagawa, 2002, Fission yeast CENP-B homologs nucleate centromeric heterochromatin by promoting heterochromatin-specific histone tail modifications, Genes Dev., 16, 1766, 10.1101/gad.997702 Navarro-Mendoza, 2019, Early diverging fungus Mucor circinelloides lacks centromeric histone CENP-A and displays a mosaic of point and regional centromeres, Curr. Biol., 29, 3791, 10.1016/j.cub.2019.09.024 Nergadze, 2018, Birth, evolution, and transmission of satellite-free mammalian centromeric domains, Genome Res., 28, 789, 10.1101/gr.231159.117 Oh, 2020, Gene expression and cell identity controlled by anaphase-promoting complex, Nature, 579, 136, 10.1038/s41586-020-2034-1 Ohzeki, 2016, KAT7/HBO1/MYST2 regulates CENP-A chromatin assembly by antagonizing Suv39h1-mediated centromere inactivation, Dev. Cell, 37, 413, 10.1016/j.devcel.2016.05.006 Okada, 2007, CENP-B controls centromere formation depending on the chromatin context, Cell, 131, 1287, 10.1016/j.cell.2007.10.045 Otake, 2020, CENP-B creates alternative epigenetic chromatin states permissive for CENP-A or heterochromatin assembly, J. Cell Sci., 133, jcs243303, 10.1242/jcs.243303 Pardo-Manuel de Villena, 2001, Female meiosis drives karyotypic evolution in mammals, Genetics, 159, 1179, 10.1093/genetics/159.3.1179 Peplowska, 2014, Sgo1 regulates both condensin and Ipl1/Aurora B to promote chromosome biorientation, PLoS Genet., 10, e1004411, 10.1371/journal.pgen.1004411 Perez-Castro, 1998, Centromeric protein B null mice are viable with no apparent abnormalities, Dev. Biol., 201, 135, 10.1006/dbio.1998.9005 Pérez, 2000, Meiosis in holocentric chromosomes: orientation and segregation of an autosome and sex chromosomes in Triatoma infestans (Heteroptera), Chromosome Res., 8, 17, 10.1023/A:1009266801160 Peris, 2009, Motor-dependent microtubule disassembly driven by tubulin tyrosination, J. Cell Biol., 185, 1159, 10.1083/jcb.200902142 Pesenti, 2018, Reconstitution of a 26-subunit human kinetochore reveals cooperative microtubule binding by CENP-OPQUR and NDC80, Mol. Cell, 71, 923, 10.1016/j.molcel.2018.07.038 Plasterk, 1999, Resident aliens: the Tc1/mariner superfamily of transposable elements, Trends Genet., 15, 326, 10.1016/S0168-9525(99)01777-1 Presgraves, 2010, The molecular evolutionary basis of species formation, Nat. Rev. Genet., 11, 175, 10.1038/nrg2718 Rhind, 2011, Comparative functional genomics of the fission yeasts, Science, 332, 930, 10.1126/science.1203357 Rhoades, 1942, Preferential segregation in maize, Genetics, 27, 395, 10.1093/genetics/27.4.395 Rizvi, 2017, The 2 micron plasmid: a selfish genetic element with an optimized survival strategy within Saccharomyces cerevisiae, Curr. Genet., 64, 25, 10.1007/s00294-017-0719-2 Rocchi, 2011, Centromere repositioning in mammals, Heredity, 108, 59, 10.1038/hdy.2011.101 Sazer, 2014, Deciphering the evolutionary history of open and closed mitosis, Curr. Biol., 24, R1099, 10.1016/j.cub.2014.10.011 Schueler, 2010, Adaptive evolution of foundation kinetochore proteins in primates, Mol. Biol. Evol., 27, 1585, 10.1093/molbev/msq043 Shi, 2016, Regional selection of the brain size regulating gene CASC5 provides new insight into human brain evolution, Hum. Genet., 136, 193, 10.1007/s00439-016-1748-5 Sirajuddin, 2014, Regulation of microtubule motors by tubulin isotypes and post-translational modifications, Nat. Cell Biol., 16, 335, 10.1038/ncb2920 Swentowsky, 2020, Distinct kinesin motors drive two types of maize neocentromeres, Genes Dev., 34, 1239, 10.1101/gad.340679.120 Tada, 2011, Condensin association with histone H2A shapes mitotic chromosomes, Nature, 474, 477, 10.1038/nature10179 Takeiri, 2013, New DNA probes to detect aneugenicity in rat bone marrow micronucleated cells by a pan-centromeric FISH analysis, Mutat. Res., 755, 73, 10.1016/j.mrgentox.2013.05.011 Tanno, 2010, Phosphorylation of mammalian Sgo2 by Aurora B recruits PP2A and MCAK to centromeres, Genes Dev., 24, 2169, 10.1101/gad.1945310 Thondehaalmath, 2021, Understanding and exploiting uniparental genome elimination in plants: insights from Arabidopsis thaliana, J. Exp. Bot., 72, 4646, 10.1093/jxb/erab161 Tromer, 2015, Widespread recurrent patterns of rapid repeat evolution in the kinetochore scaffold KNL1, Genome Biol. Evol., 7, 2383, 10.1093/gbe/evv140 Tsukahara, 2010, Phosphorylation of the CPC by Cdk1 promotes chromosome bi-orientation, Nature, 467, 719, 10.1038/nature09390 Upadhyay, 2017, Ablation of RNA interference and retrotransposons accompany acquisition and evolution of transposases to heterochromatin protein CENPB, Mol. Biol. Cell, 28, 1132, 10.1091/mbc.e16-07-0485 Veld, 2016, Molecular basis of outer kinetochore assembly on CENP-T, eLife, 5 Ventura, 2003, Neocentromeres in 15q24-26 map to duplicons which flanked an ancestral centromere in 15q25, Genome Res., 13, 2059, 10.1101/gr.1155103 Verzijlbergen, 2014, Shugoshin biases chromosomes for biorientation through condensin recruitment to the pericentromere, eLife, 3, 10.7554/eLife.01374 Villasante, 2007, Centromeres were derived from telomeres during the evolution of the eukaryotic chromosome, Proc. Natl. Acad. Sci. USA, 104, 10542, 10.1073/pnas.0703808104 Wang, 2010, Independent segregation of the two arms of the Escherichia coli ori region requires neither RNA synthesis nor MreB dynamics, J. Bacteriol., 192, 6143, 10.1128/JB.00861-10 Watase, 2018, Non-random sister chromatid segregation mediates rDNA copy number maintenance in Drosophila (Cold Spring Harbor Laboratory), bioRxiv, 498352 Weir, 2016, Insights from biochemical reconstitution into the architecture of human kinetochores, Nature, 537, 249, 10.1038/nature19333 Werren, 2011, Selfish genetic elements, genetic conflict, and evolutionary innovation, Proc. Natl. Acad. Sci. USA, 108, 10863, 10.1073/pnas.1102343108 White, 2010, A network approach to study karyotypic evolution: the chromosomal races of the Common Shrew (Sorex araneus) and House Mouse (Mus musculus) as model systems, Syst. Biol., 59, 262, 10.1093/sysbio/syq004 Yadav, 2018, RNAi is a critical determinant of centromere evolution in closely related fungi, Proc. Natl. Acad. Sci. USA, 115, 3108, 10.1073/pnas.1713725115 Yamagishi, 2008, Heterochromatin links to centromeric protection by recruiting shugoshin, Nature, 455, 251, 10.1038/nature07217 Yamagishi, 2010, Two histone marks establish the inner centromere and chromosome bi-orientation, Science, 330, 239, 10.1126/science.1194498 Yamaichi, 2004, migS, a cis-acting site that affects bipolar positioning of oriC on the Escherichia coli chromosome, EMBO J., 23, 221, 10.1038/sj.emboj.7600028 Yi, 2018, HP1 links centromeric heterochromatin to centromere cohesion in mammals, EMBO Rep., 19, 4, 10.15252/embr.201745484 Zhao, 2019, Kinetochore proteins have a post-mitotic function in neurodevelopment, Dev. Cell, 48, 873, 10.1016/j.devcel.2019.02.003