Evolution of electric field assisted dissolution of nanoparticles investigated by spectroscopic ellipsometry

Optical Materials - Tập 101 - Trang 109752 - 2020
Boris Okorn1, Jordi Sancho-Parramon1, Petar Pervan1, Ivana Fabijanić1, Vesna Janicki1
1Ruđer Bošković Institute, Bijenička cesta 54, Zagreb 10000, Croatia

Tài liệu tham khảo

Podlipensky, 2004, Dissolution of silver nanoparticles in glass through an intense dc electric field, J. Phys. Chem. B, 108, 17699, 10.1021/jp045874c Mezzapesa, 2006, Bleaching of sol-gel glass film with embedded gold nanoparticles by thermal poling, Appl. Phys. Lett., 89, 183121, 10.1063/1.2382728 Sancho-Parramon, 2008, Electric field assisted dissolution of metal clusters in metal island films for photonic heterostructures, Appl. Phys. Lett., 92, 163108, 10.1063/1.2892037 Lipovskii, 2011, Bleaching versus poling: comparison of electric field induced phenomena in glasses and glass metal nanocomposites, J. Appl. Phys., 109, 1, 10.1063/1.3511746 Deparis, 2004, Poling-assisted bleaching of metal-doped nanocomposite glass, Appl. Phys. Lett., 85, 872, 10.1063/1.1779966 Beresna, 2010, Poling-assisted fabrication of plasmonic nanocomposite devices in glass, Adv. Mater., 22, 4368, 10.1002/adma.201001222 Abdolvand, 2005, Metallodielectric two-dimensional photonic structures made by electric-field microstructuring of nanocomposite glasses, Adv. Mater., 17, 2983, 10.1002/adma.200501492 Janicki, 2010, Three-dimensional photonic microstructures produced by electric field assisted dissolution of metal nanoclusters in multilayer stacks, Appl. Phys. B, 98, 93, 10.1007/s00340-009-3705-7 Lipovskii, 2008, Electric field imprinting of sub-micron patterns in glass–metal nanocomposites, Nanotechnology, 19, 415304, 10.1088/0957-4484/19/41/415304 Sinev, 2013, Nanoscale patterning of metal nanoparticle distribution in glasses, Nanoscale research letters, 8, 260, 10.1186/1556-276X-8-260 Janicki, 2018, Selective electric field assisted dissolution as a technique for micro and nano structuring of metal thin films, Appl. Phys. Lett., 113, 183508, 10.1063/1.5042037 Petrov, 2012, Dissolution of metal nanoparticles in glass under a dc electric field, J. Phys. Appl. Phys., 46, 10.1088/0022-3727/46/4/045302 Deparis, 2005, Evolution of poling-assisted bleaching of metal-doped nanocomposite glass with poling conditions, Appl. Phys. Lett., 86, 261109, 10.1063/1.1977205 Sancho-Parramon, 2006, Modeling of optical properties of silver-doped nanocomposite glasses modified by electric-field-assisted dissolution of nanoparticles, Appl. Optic., 45, 8874, 10.1364/AO.45.008874 Zou, 2008, Electric field assisted dissolution of au rods in gold-doped silicate glass, J. Appl. Phys., 104, 113113, 10.1063/1.3040555 Zou, 2009, Direct evidence for electric field assisted dissolution of au nanoparticles on glass surface, J. Appl. Phys., 105, 103114, 10.1063/1.3133240 Hilfiker, 2019, Spectroscopic ellipsometry characterization of multilayer optical coatings, Surf. Coating. Technol., 357, 114, 10.1016/j.surfcoat.2018.10.003 Sancho-Parramon, 2010, On the dielectric function tuning of random metal-dielectric nanocomposites for metamaterial applications, Optic Express, 18, 26915, 10.1364/OE.18.026915 Tonova, 2001, Characterization of inhomogeneous dielectric coatings with arbitrary refractive index profiles by multiple angle of incidence ellipsometry, Thin Solid Films, 397, 17, 10.1016/S0040-6090(01)01400-6 Hövel, 2010, Dielectric properties of ultrathin metal films around the percolation threshold, Phys. Rev. B, 81, 10.1103/PhysRevB.81.035402 Amotchkina, 2011, Comparison of two techniques for reliable characterization of thin metal–dielectric films, Appl. Optic., 50, 6189, 10.1364/AO.50.006189 Sancho-Parramon, 2011, Tuning the effective dielectric function of thin film metal-dielectric composites by controlling the deposition temperature, J. Nanophotonics, 5, 10.1117/1.3590238 Stenzel, 2015 Bergman, 1978, The dielectric constant of a composite material–a problem in classical physics, Phys. Rep., 43, 377, 10.1016/0370-1573(78)90009-1 Theiß, 1994, The use of effective medium theories in optical spectroscopy, vol. 33, 149 Day, 2000, Spectral function of composites from reflectivity measurements, Phys. Rev. Lett., 84, 1978, 10.1103/PhysRevLett.84.1978 Sancho-Parramon, 2003, Use of information on the manufacture of samples for the optical characterization of multilayers through a global optimization, Appl. Optic., 42, 1325, 10.1364/AO.42.001325 Leitner, 2009, Uniformly oriented, ellipsoidal nanovoids in glass created by electric-field-assisted dissolution of metallic nanoparticles, Phys. Rev. B, 79, 153408, 10.1103/PhysRevB.79.153408 Sancho-Parramon, 2005, Effective medium models for metal-dielectric composites: an analysis based on the spectral density theory, vol. 5963, 596320 Barrera, 1990, Effective dielectric response of polydispersed composites, Phys. Rev. B, 41, 7370, 10.1103/PhysRevB.41.7370 Grechko, 2000, Dielectric function of aggregates of small metallic particles embedded in host insulating matrix, Appl. Phys. Lett., 76, 1854, 10.1063/1.126190 Held, 2012, Manufacture and characterization of optical coatings with incorporated copper island films, Appl. Optic., 51, 4436, 10.1364/AO.51.004436 Giallorenzi, 1973, Optical waveguides formed by thermal migration of ions in glass, Appl. Optic., 12, 1240, 10.1364/AO.12.001240