Tiến hóa của các gen snRNAspliceosomal ở động vật nguyên sinh

Journal of Molecular Evolution - Tập 67 - Trang 594-607 - 2008
Manuela Marz1, Toralf Kirsten2, Peter F. Stadler1,2,3,4,5
1Bioinformatics Group, Department of Computer Science, University of Leipzig, Leipzig, Germany
2Interdisziplinäres Zentrum für Bioinformatik, University of Leipzig, Leipzig, Germany
3RNomics Group, Fraunhofer Institute for Immunology and Cell Therapy, Leipzig, Germany
4Institute for Theoretical Chemistry and Structural Biology, University of Vienna, Wien, Austria
5The Santa Fe Institute, Santa Fe, USA

Tóm tắt

Trong khi các nghiên cứu về lịch sử tiến hóa của các họ protein là điều phổ biến, còn rất ít điều được biết đến về các RNA không mã hóa ngoài microRNAs và một số snoRNAs. Trong bài báo này, chúng tôi điều tra chi tiết lịch sử tiến hóa của chín họ snRNA spliceosomal (U1, U2, U4, U5, U6, U11, U12, U4atac và U6atac) trên các bộ gen đã được giải mã hoàn toàn hoặc một phần của các động vật đa bào. Các đại diện cho năm snRNA spliceosomal chính đã được tìm thấy trong tất cả các bộ gen. Không phát hiện thấy bất kỳ snRNA spliceosomal phụ nào trong giun tròn hay trong các đoạn ADN shotgun của Oikopleura dioica, trong khi ở tất cả các bộ gen động vật khác, tối đa chỉ một trong số chúng bị thiếu. Mặc dù snRNAs xuất hiện với nhiều bản sao trong đa số các bộ gen, các nhóm paralogue có thể phân biệt không ổn định qua thời gian tiến hóa dài, mặc dù chúng xuất hiện độc lập ở một số nhánh. Nhìn chung, cấu trúc bậc hai của snRNA động vật rất được bảo tồn, mặc dù, đặc biệt là U11 và U12 ở côn trùng thể hiện những biến đổi đáng kể. Phân tích ngữ cảnh bộ gen của snRNAs cho thấy rằng chúng hành xử giống như các yếu tố di động, thể hiện rất ít sự bảo tồn syntenic.

Từ khóa

#snRNA spliceosomal #lịch sử tiến hóa #động vật đa bào #cấu trúc bậc hai #yếu tố di động

Tài liệu tham khảo

Bandelt HJ, Dress AWM (1992) A canonical decomposition theory for metrics on a finite set. Adv Math 92:47 Bark C, Weller P, Zabielski J, Pettersson U (1986) Genes for human U4 small nuclear RNA. Gene 50:333–344 Barzotti R, Pelliccia F, Rocchi A (2003) Identification and characterization of U1 small nuclear RNA genes from two crustacean isopod species. Chromosome Res 11:365–373 Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2007) GenBank. Nucleic Acids Res 35:D21–D25 Bhathal HS, Zamrod Z, Tobaru T, Stumph WE (1995) Identification of proximal sequence element nucleotides contributing to the differential expression of variant U4 small nuclear RNA genes. J Biol Chem 270:27,629–27,633 Bompfünewerer AF, Flamm C, Fried C, Fritzsch G, Hofacker IL, Lehmann J, Missal K, Mosig A, Müller B, Prohaska SJ, Stadler BMR, Stadler PF, Tanzer A, Washietl S, Witwer C (2005) Evolutionary patterns of non-coding RNAs. Th Biosci 123:301–369 Branlant C, Krol A, Lazar E, Haendler B, Jacob M, GalegoDias L, Pousada C (1983) High evolutionary conservation of the secondary structure and of certain nucleotide sequences of U5 RNA. Nucleic Acids Res 11:8359–8367 Bryant D, Moulton V (2004) Neighbor-net: an agglomerative method for the construction of phylogenetic networks. Mol Biol Evol 21:255–265 Chen L, Lullo DJ, Ma E, Celniker SE, Rio DC, Doudna JA (2005) Identification and analysis of U5 snRNA variants in Drosophila. RNA 11:1473–1477 Collins L, Penny D (2005) Complex spliceosomal organization ancestral to extant eukaryotes. Mol Biol Evol 22:1053–1066 Collins LJ, Macke TJ, Penny D (2004) Searching for ncRNAs in eukaryotic genomes: maximizing biological input with RNA motif. J Integ Bioinf 1:2004–08–04. Available at: http://journalimbiode/indexphp?paperid56 Consortium International Chicken Genome Sequencing (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432:695–716 Cross I, Rebordinos L (2005) 5S rDNA and U2 snRNA are linked in the genome of Crassostrea angulata and Crassostrea gigas oysters: Does the (ct)n(ga)n microsatellite stabilize this novel linkage of large tandem arrays? Genome 48:1116–1119 Dahlberg JE, Lund E (1988) The genes and transcription of the major small nuclear RNAs. In: Birnstiel ML (ed) Structure and function of major and minor small nuclear ribonucleoprotein particles. Springer-Verlag, Berlin, pp 38–70 Denison RA, Van Arsdell SW, Bernstein LB, Weiner AM (1981) Abundant pseudogenes for small nuclear RNAs are dispersed in the human genome. Proc Natl Acad Sci USA 78:810–814 Domitrovich AM, Kunkel GR (2003) Multiple, dispersed human U6 small nuclear RNA genes with varied transcriptional efficiencies. Nucleic Acids Res 31:2344–2352 Drosophila 12 Genomes Consortium (2007) Evolution of genes and genomes on the Drosophila phylogeny. Nature 450:203–218 Ebel C, Frantz C, Paulus F, Imbault P (1999) Trans-splicing and cis-splicing in the colourless euglenoid, Entosiphon sulcatum. Curr Genet 35:542–550 Flicek P, Aken BL, Beal K, Ballester B, Caccamo M, Chen Y, Clarke L, Coates G, Cunningham F, Cutts T, Down T, Dyer SC, Eyre T, Fitzgerald S, Fernandez-Banet J, Gräf S, Haider S, Hammond M, Holland R, Howe KL, Howe K, Johnson N, Jenkinson A, Käahäari A, Keefe D, Kokocinski F, Kulesha E, Lawson D, Longden I, Megy K, Meidl P, Overduin B, Parker A, Pritchard B, Prlic A, Rice S, Rios D, Schuster M, Sealy I, Slater G, Smedley D, Spudich G, Trevanion S, Vilella AJ, Vogel J, White S, Wood M, Birney E, Cox T, Curwen V, Durbin R, Fernandez-Suarez XM, Herrero J, Hubbard TJP, Kasprzyk A, Proctor G, Smith J, Ureta-Vidal A, Searle S (2008) Ensembl 2008. Nucleic Acids Res 36:D707–D714 Forbes DJ, Kirschner MW, Caput D, Dahlberg JE, Lund E (1984) Differential expression of multiple U1 small nuclear RNAs in oocytes and embryos of Xenopus laevisi. Cell 38:681–689 Gautheret D, Lambert A (2001) Direct RNA motif definition and identification from multiple sequence alignments using secondary structure profiles. J Mol Biol 313:1003–1011 Giribet G, Edgecombe GD, Wheeler WC (2001) Arthropod phylogeny based on eight molecular loci and morphology. Nature 413:157–161 Gonzalez IL, Sylvester JE (2001) Human rDNA: evolutionary patterns within the genes and tandem arrays derived from multiple chromosomes. Genomics 73:255–263 Griffiths-Jones S (2005) RALEE—RNA alignment editor in Emacs. Bioinformatics 21:257–259 Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, Bateman A (2005) Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res 33:D121–D124 Hastings KE (2005) SL trans-splicing: Easy come or easy go? Trends Genet 21:240–247 Hausner TP, Giglio LM, Weiner AM (1990) Evidence for basepairing between mammalian U2 and U6 small nuclear ribonucleoprotein particles. Genes Dev 4:2146–2156 Hernandez N (2001) Small nuclear RNA genes: a model system to study fundamental mechanisms of transcription. J Biol Chem 276:26,733–26,736 Hillis DM, Dixon MT (1991) Ribosomal DNA: molecular evolution and phylogenetic inference. Q Rev Biol 66:411–453 Hinas A, Larsson P, Avesson L, Kirsebom LA, Virtanen A, Söderbom F (2006) Identification of the major spliceosomal RNAs in Dictyostelium discoideum reveals developmentally regulated U2 variants and polyadenylated snRNAs. Eukaryot Cell 5:924–934 Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, Schuster P (1994) Fast folding and comparison of RNA secondary structures. Monatsh Chem 125:167–188 Hofacker IL, Fekete M, Stadler PF (2002) Secondary structure prediction for aligned RNA sequences. J Mol Biol 319:1059–1066 Hubbard T, Andrews D, Caccamo M, Cameron G, Chen Y, Clamp M, Clarke L, Coates G, Cox T, Cunningham F, Curwen V, Cutts T, Down T, Durbin R, Fernandez-Suarez XM, Gilbert J, Hammond M, Herrero J, Hotz H, Howe K, Iyer V, Jekosch K, Kahari A, Kasprzyk A, Keefe D, Keenan S, Kokocinsci F, London D, Longden I, McVicker G, Melsopp C, Meidl P, Potter S, Proctor G, Rae M, Rios D, Schuster M, Searle S, Severin J, Slater G, Smedley D, Smith J, Spooner W, Stabenau A, Stalker J, Storey R, Trevanion S, Ureta-Vidal A, Vogel J, White S, Woodwark C, Birney E (2005) Ensembl 2005. Nucleic Acids Res 33:D447–D453 Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267 Kirsten T, Rahm E (2006) BioFuice: mapping-based data intergation in bioinformatics. In: Leser U, Naumann F, Eckman B (eds) Proceedings of the 3rd International Workshop on Data Integration in the Life Sciences (DILS), vol 4075. Springer Verlag, Berlin, pp 124–135 König H, Matter N, Bader R, Thiele W, Müller F (2007) Splicing segregation: the minor spliceosome acts outside the nucleus and controls cell proliferation. Cell 131:718–729 Korf GM, Stumph WE (1986) Chicken U2 and U1 RNA genes are found in very different genomic environments but have similar promoter structures. Biochemistry 25:2041–2047 Krol A, Branlant C, Lazar E, Gallinaro H, Jacob M (1981) Primary and secondary structures of chicken, rat and man nuclear U4 RNAs. Homologies with U1 and U5 RNAs. Nucleic Acids Res 9:2699–2716 Kunkel GR, Pederson T (1988) Upstream elements required for efficient transcription of a human U6 RNA gene resemble those of U1 and U2 genes even though a different polymerase is used. Genes Dev 2:196–204 Kyriakopoulou C, Larsson P, Liu L, Schuster J, Söderbom F, Kirsebom LA, Virtanen A (2006) U1-like snRNAs lacking complementarity to canonical 5′ splice sites. RNA 12:1603–1611 Liao D (1999) Concerted evolution: molecular mechanism and biological implications. Am J Hum Genet 64:24–30 Liao D, Weiner AM (1995) Concerted evolution of the tandemly repeated genes encoding primate U2 small nuclear RNA (the RNU2 locus) does not prevent rapid diversification of the (CT)n(GA)n microsatellite embedded within the U2 repeat unit. Genomics 30:583–593 Liao D, Pavelitz T, Kidd JR, Kidd KK, Weiner AM (1997) Concerted evolution of the tandemly repeated genes encoding human U2 snRNA (the RNU2 locus) involves rapid intrachromosomal homogenization and rare interchromosomal gene conversion. EMBO J 16:588–598 Lo PC, Mount SM (1990) Drosophila melanogaster genes for U1 snRNA variants and their expression during development. Nucleic Acids Res 18:6971–6979 López MD, Alm Rosenblad M, Samuelsson T (2008) Computational screen for spliceosomal RNA genes aids in defining the phylogenetic distribution of major and minor spliceosomal components. Nucleic Acids Res 36:3001–3010 Lorkovíc ZJ, Lehner R, Forstner C, Barta A (2005) Evolutionary conservation of minor U12-type spliceosome between plants and humans. RNA 11:1095–1107 Macke TJ, Ecker DJ, Gutell RR, Gautheret D, Case DA, Sampath R (2001) RNAMotif, an RNA secondary structure definition and search algorithm. Nucleic Acids Res 29(22):4724–4735 Manchado M, Zuasti E, Cross I, Merlo A, Infante C, Rebordinos L (2006) Molecular characterization and chromosomal mapping of the 5S rRNA gene in Solea senegalensis: a new linkage to the U1, U2, and U5 small nuclear RNA genes. Genome 49:79–86 Mattaj IW, Zeller R (1983) Xenopus laevis U2 snRNA genes: tandemly repeated transcription units sharing 5′ and 3′ flanking homology with other RNA polymerase II transcribed genes. EMBO J 2:1883–1891 Missal K, Rose D, Stadler PF (2005) Non-coding RNAs in Ciona intestinalis. Bioinformatics 21(S2):i77–i78 Missal K, Zhu X, Rose D, Deng W, Skogerbø G, Chen R, Stadler PF (2006) Prediction of structured non-coding RNAs in the genome of the nematode Caenorhabitis elegans. J Exp Zool Mol Dev Evol 306B:379–392 Mitrovich QM, Guthrie C (2007) Evolution of small nuclear RNAs in S cerevisiae, C albicans, and other hemiascomycetous yeasts. RNA 13:2066–2080 Montzka KA, Steitz JA (1988) Additional low-abundance human small nuclear ribonucleoproteins: U11, U12, etc. Proc Natl Acad Sci USA 85:8885–8889 Morales J, Borrero M, Sumerel J (1997) Identification of developmentally regulated sea urchin U5 snRNA genes. DNA Seq 7:243–259 Mount SM, Steitz JA (1981) Sequence of U1 RNA from Drosophila melanogaster: implications for U1 secondary structure and possible involvement in splicing. Nucleic Acids Res 9:6351–6368 Mount SM, Gotea V, Lin CF, Hernandez K, Makałowski W (2007) Spliceosomal small nuclear RNA genes in 11 insect genomes. RNA 13:5–14 Myslinksi E, Krol A, Carbon P (2004) Characterization of snRNA and snRNA-type genes in the pufferfish Fugu rubripes. Gene 330:149–158 Myslinski E, Branlant C, Wieben ED, Pederson T (1984) The small nuclear RNAs of Drosophila. J Mol Biol 180:927–945 Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39:121–152 Nilsen TW (2003) The spliceosome: The most complex macromolecular machine in the cell? Bioessays 25:1147–1149 Otake LR, Scamborova P, Hashimoto C, Steitz JA (2002) The divergent U12-type spliceosome is required for pre-mRNA splicing and is essential for development in Drosophila. Mol Cell 9:439–446 Papillon D, Perez Y, Caubit X, Le Parco Y (2006) Systematics of chaetognatha under the light of molecular data, using duplicated ribosomal 18S DNA sequences. Mol Phylogenet Evol 38:621–634 Patel AA, Steitz JA (2003) Splicing double: insights from the second spliceosome. Nat Rev Mol Cell Biol 4:960–970 Pavelitz T, Liao D, Weiner AM (1999) Concerted evolution of the tandem array encoding primate U2 snRNA (the RNU2 locus) is accompanied by dramatic remodeling of the junctions with flanking chromosomal sequences. EMBO J 18:3783–3792 Pelliccia F, Barzotti R, Bucciarelli E, Rocchi A (2001) 5S ribosomal and U1 small nuclear RNA genes: a new linkage type in the genome of a crustacean that has three different tandemly repeated units containing 5S ribosomal DNA sequences. Genome 44:331–335 Pereira-Simon S, Sierra-Montes JM, Ayesh K, Martinez L, Socorro A, Herrera RJ (2004) Variants of U1 small nuclear RNA assemble into spliceosomal complexes. Insect Mol Biol 13:189–194 Putnam NH, Butts T, Ferrier DEK, Furlong RF, Hellsten UK, Takeshi Robinson-Rechavi M, Shoguchi E, Terry A, Yu JK, Benito-Gutíerrez E, Dubchak I, Garcia-Fernàndez J, Gibson-Brown JJ, Grigoriev IV, Horton AC, de Jong PJ, Jurka J, Kapitonov VV, Kohara Y, Kuroki Y, Lindquist E, Lucas S, Osoegawa K, Pennacchio LA, Salamov AA, Satou Y, Sauka-Spengler T, Schmutz J, Shin-I T, Toyoda A, Bronner-Fraser M, Fujiyama A, Holland LZ, Holland PWH, Satoh N, Rokhsar DS (2008) The amphioxus genome and the evolution of the chordate karyotype. Nature 453:1064–1071 Russell AG, Charette JM, Spencer DF, Gray MW (2006a) An early evolutionary origin for the minor spliceosome. Nature 443:863–866 Russell AG, Charette JM, Spencer DF, Gray MW (2006b) An early evolutionary origin for the minor spliceosome. Nature 443:863–866 Schlötterer C, Tautz D (1994) Chromosomal homogeneity of Drosophila ribosomal DNA arrays suggests intrachromosomal exchanges drive concerted evolution. Curr Biol 4:777–783 Schmitz J, Zemann A, Churakov G, Kuhl H, Grützner F, Reinhardt R, Brosius J (2008) Retroposed SNOfall—a mammalianwide comparison of platypus snornas. Genome Res 18:1005–1010 Schneider C, Will CL, Brosius J, Frilander M, Lührmann R (2004) Identification of an evolutionarily divergent U11 small nuclear ribonucleoprotein paricle in Drosophila. Proc Natl Acad Sci USA 101(26):9584–9589 Shambaugh JD, Hannon GE, Nilsen TW (1994) The spliceosomal U small nuclear RNAs of Ascaris lumbricoides. Mol Biochem Parasitol 64:349–352 Sheth N, Roca X, Hastings ML, Roeder T, Krainer AR, Sachidanandam R (2006) Comprehensive splice-site analysis using comparative genomics. Nucleic Acids Res 34:3955–3967 Shukla GC, Padgett RA (1999) Conservation of functional features of U6atac and U12 snRNAs between vertebrates and higher plants. RNA 5:525–538 Shukla GC, Padgett RA (2004) U4 small nuclear RNA can function in both the major and minor spliceosomes. Proc Natl Acad Sci USA 101:93–98 Shukla GC, Cole AJ, Dietrich RC, Padgett RA (2002) Domains of human U4atac snRNA required for U12-dependent splicing in vivo. Nucleic Acids Res 30:4650–4657 Sierra-Montes JM, Freund AV, Ruiz LM, Szmulewicz MN, Rowold DJ, Herrera RJ (2002) Multiple forms of U2 snRNA coexist in the silk moth Bombyx mori. Insect Mol Biol 11:105–114 Sierra-Montes JM, Pereira-Simon S, Freund AV, Ruiz LM, Szmulewicz MN, Herrera RJ (2003) A diversity of U1 small nuclear RNAs in the silk moth Bombyx mori. Insect Biochem Mol Biol 33:29–39 Sierra-Montes JM, Pereira-Simon S, Smail SS, Herrera RJ (2005) The silk moth Bombyx mori U1 and U2 snRNA variants are differentially expressed. Gene 352:127–136 Smail SS, Ayesh K, Sierra-Montes JM, Herrera RJ (2006) U6 snRNA variants isolated from the posterior silk gland of the silk moth Bombyx mori. Insect Biochem Mol Biol 36:454–465 Sontheimer EJ, Steitz JA (1992) Three novel functional variants of human U5 small nuclear RNA. Mol Cell Biol 12:734–746 Stefanovic B, Marzluff WF (1992) Characterization of two developmentally regulated sea urchin U2 small nuclear RNA promoters: a common required TATA sequence and independent proximal and distal elements. Mol Cell Biol 12:650–660 Stefanovic B, Li JM, Sakallah S, Marzluff WF (1991) Isolation and characterization of developmentally regulated sea urchin U2 snRNA genes. Dev Biol 148:284–294 Tarn WY, Yario TA, Steitz JA (1995) U12 snRNAs in vertebrates: evolutionary conservation of 5′ sequences implicated in splicing of pre-mRNAs containing a minor class of introns. RNA 1:644–656 Telford MJ, Holland PWH (1997) Evolution of 28S ribosomal DNA in chaetognaths: duplicate genes and molecular phylogeny. J Mol Evol 44:135–144 The Chimpanzee Sequencing Analysis Consortium (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437:69–87 Thomas J, Lea K, Zucker-Aprison E, Blumenthal T (1990) The spliceosomal snRNAs of Caenorhabditis elegans. Nucleic Acids Res 18:2633–2642 Tichelaar JW, Wieben ED, Reddy R, Vrabel A, Camacho P (1998) In vivo expression of a variant human U6 RNA from a unique, internal promoter. Biochemistry 37:12, 943–12,951 Valadkhan S (2005) snRNAs as the catalysts of pre-mRNA splicing. Curr Opin Chem Biol 9:603–608 Valadkhan S (2007) The spliceosome: caught in a web of shifting interactions. Curr Opin Struct Biol 17:310–315 Valadkhan S, Mohammadi A, Wachtel C, Manley JL (2007) Protein-free spliceosomal snRNAs catalyze a reaction that resembles the first step of splicing. RNA 13:2300–2311 Weber MJ (2006) Mammalian small nucleolar RNAs are mobile genetic elements. PLoS Genet 2:e205 Will CL, Lührmann R (2005) Splicing of a rare class of introns by the U12-dependent spliceosome. Biol Chem 386:713–724