Sự phát triển của tần suất và cường độ của hiện tượng mưa lớn và sóng thần đồng thời trên quy mô toàn cầu: Những tác động đối với lũ kết hợp

Yangchen Lai1,2,3,4, Qingquan Li3, Jianfeng Li1,2,4, Qiming Zhou2,4, Xinchang Zhang5, Guofeng Wu3
1Guangdong-Hong Kong Joint Laboratory for Water Security, China
2Institute for Research and Continuing Education, Hong Kong Baptist University, China
3MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area, Shenzhen University, China
4The Centre for Geo-computation Studies and Department of Geography, Hong Kong Baptist University, China
5School of Geography and Remote Sensing, Guangzhou University, China

Tóm tắt

Hiện tượng lũ kết hợp gia tăng do mưa lớn đồng thời và sóng thần đang nhận được sự chú ý ngày càng tăng do mối đe dọa tiềm tàng đối với các khu vực ven biển. Phân tích những thay đổi trong các đặc điểm của các sự kiện lũ kết hợp trong quá khứ là rất quan trọng để hiểu những rủi ro lũ lụt đang thay đổi liên quan đến sự kết hợp của nhiều yếu tố/nguy hiểm. Trong nghiên cứu này, chúng tôi đã xem xét sự tiến triển của số ngày lũ kết hợp (được định nghĩa là các ngày có mưa cực đoan và sóng thần cực đoan đồng thời vượt quá mức 90% của định mức) dựa trên dữ liệu quan sát về mưa và sóng thần trên toàn cầu. Kết quả cho thấy số ngày lũ kết hợp hàng năm đã tăng đáng kể từ 1 đến 4 ngày mỗi thập kỷ (α = 0.1) ở bờ Đông của Mỹ và Bắc Âu, trong khi số ngày lũ kết hợp hàng năm giảm đáng kể ở Nam Âu và Nhật Bản. Xu hướng gia tăng về mưa trong điều kiện sóng thần cực đoan và sóng thần dưới mưa cực đoan đã được tìm thấy rộng rãi trên toàn thế giới trừ Nhật Bản, cho thấy rằng có mưa lớn hơn khi xảy ra sóng thần cực đoan, và sóng thần cao hơn xảy ra khi có mưa cực đoan. So với nhau, tỷ lệ đóng góp toàn cầu của sóng thần (tức là 65%) trong việc thay đổi số ngày lũ kết hợp cao hơn so với mưa (tức là 35%), cho thấy rằng sóng thần có khả năng chi phối những thay đổi trong số ngày lũ kết hợp. Nghiên cứu này trình bày các đặc điểm không gian và thời gian của các sự kiện lũ kết hợp trên quy mô toàn cầu, điều này giúp hiểu rõ hơn về lũ kết hợp và cung cấp tài liệu tham khảo khoa học cho quản lý rủi ro lũ lụt, đồng thời là nền tảng không thể thiếu cho các nghiên cứu tiếp theo.

Từ khóa


Tài liệu tham khảo

Arns, 2020, Non-linear Interaction Modulates Global Extreme Sea Levels, Coastal Flood Exposure, and Impacts, Nat. Commun., 11, 1, 10.1038/s41467-020-15752-5

Bevacqua, 2017, Multivariate Statistical Modelling of Compound Events via Pair-Copula Constructions: Analysis of Floods in Ravenna (Italy), Hydrol. Earth Syst. Sci., 21, 2701, 10.5194/hess-21-2701-2017

Bevacqua, 2019, Higher Probability of Compound Flooding from Precipitation and Storm Surge in Europe under Anthropogenic Climate Change, Sci. Adv., 5, 5531, 10.1126/sciadv.aaw5531

Bevacqua, , Brief Communication: The Role of Using Precipitation or River Discharge Data when Assessing Global Coastal Compound Flooding, Nat. Hazards Earth Syst. Sci., 20, 1765, 10.5194/nhess-20-1765-2020

Bevacqua, , More Meteorological Events that Drive Compound Coastal Flooding Are Projected under Climate Change, Commun. Earth Environ., 1, 10.1038/s43247-020-00044-z

Booth, 2016, Comparing hurricane and Extratropical Storm Surge for the Mid-Atlantic and Northeast Coast of the United States for 1979-2013, Environ. Res. Lett., 11, 10.1088/1748-9326/11/9/094004

Field, 2012, Changes in Climate Extremes and Their Impacts on the Natural Physical Environment, Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, 109, 10.1017/CBO9781139177245

Chan, 2012, Flood Risk in Asia's Urban Mega-Deltas, Environ. Urbanization Asia, 3, 41, 10.1177/097542531200300103

Couasnon, 2020, Measuring Compound Flood Potential from River Discharge and Storm Surge Extremes at the Global Scale, Nat. Hazards Earth Syst. Sci., 20, 489, 10.5194/nhess-20-489-2020

Dong, 2021, Attribution of Extreme Precipitation with Updated Observations and CMIP6 Simulations, J. Clim., 34, 871, 10.1175/jcli-d-19-1017.1

Dong, 2019, Precipitable Water and CAPE Dependence of Rainfall Intensities in China, Clim. Dyn., 52, 3357, 10.1007/s00382-018-4327-8

Emanuel, 2017, Assessing the Present and Future Probability of Hurricane Harvey's Rainfall, Proc. Natl. Acad. Sci. USA, 114, 12681, 10.1073/pnas.1716222114

Evans, 2003, Objective Indicators of the Life Cycle Evolution of Extratropical Transition for Atlantic Tropical Cyclones, Mon. Wea. Rev., 131, 909, 10.1175/1520-0493(2003)131<0909:oiotlc>2.0.co;2

Fatichi, 2009, A Comprehensive Analysis of Changes in Precipitation Regime in Tuscany, Int. J. Climatol., 29, 1883, 10.1002/joc.1921

Frank, 2001, Effects of Vertical Wind Shear on the Intensity and Structure of Numerically Simulated Hurricanes, Mon. Wea. Rev., 129, 2249, 10.1175/1520-0493(2001)129<2249:eovwso>2.0.co;2

Gemmer, 2011, Trends in Precipitation Extremes in the Zhujiang River basin, South China, J. Clim., 24, 750, 10.1175/2010jcli3717.1

Gori, 2020, Tropical Cyclone Compound Flood Hazard Assessment: From Investigating Drivers to Quantifying Extreme Water Levels, Earth’s Future, 8, 10.1029/2020ef001660

Gu, 2017, Nonstationarity in Timing of Extreme Precipitation across China and Impact of Tropical Cyclones, Glob. Planet. Change, 149, 153, 10.1016/j.gloplacha.2016.12.019

Hamed, 1998, A Modified Mann-Kendall Trend Test for Autocorrelated Data, J. Hydrol., 204, 182, 10.1016/s0022-1694(97)00125-x

Hawcroft, 2012, How Much Northern Hemisphere Precipitation Is Associated with Extratropical Cyclones?, Geophys. Res. Lett., 39, 1, 10.1029/2012gl053866

Hawcroft, 2018, Significantly Increased Extreme Precipitation Expected in Europe and North America from Extratropical Cyclones, Environ. Res. Lett., 13, 124006, 10.1088/1748-9326/aaed59

Hendry, 2019, Assessing the Characteristics and Drivers of Compound Flooding Events Around the UK Coast, Hydrol. Earth Syst. Sci., 23, 3117, 10.5194/hess-23-3117-2019

2017

Horsburgh, 2007, Tide-surge Interaction and its Role in the Distribution of Surge Residuals in the North Sea, J. Geophys. Res. Oceans, 112, 1, 10.1029/2006jc004033

Huntingford, 2014, Potential Influences on the United Kingdom's Floods of winter 2013/14, Nat. Clim Change, 4, 769, 10.1038/nclimate2314

Iannuccilli, 2021, Extreme Precipitation Events and Their Relationships with Circulation Types in Italy, Int. J. Climatol, 1, 10.1002/joc.7109

Ikeuchi, 2017, Compound Simulation of Fluvial Floods and Storm Surges in a Global Coupled River-Coast Flood Model: Model Development and its Application to 2007 Cyclone Sidr in Bangladesh, J. Adv. Model. Earth Syst., 9, 1847, 10.1002/2017ms000943

Jane, 2020, Multivariate Statistical Modelling of the Drivers of Compound Flood Events in South Florida, Nat. Hazards Earth Syst. Sci., 20, 2681, 10.5194/nhess-20-2681-2020

Kalnay, 1996, The NCEP/NCAR 40-year Reanalysis Project, Bull. Amer. Meteorol. Soc., 77, 437, 10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2

Karim, 2008, Impacts of Climate Change and Sea-Level Rise on Cyclonic Storm Surge Floods in Bangladesh, Glob. Environ. Change, 18, 490, 10.1016/j.gloenvcha.2008.05.002

Khanam, 2021, Impact of Compound Flood Event on Coastal Critical Infrastructures Considering Current and Future Climate, Nat. Hazards Earth Syst. Sci., 21, 587, 10.5194/nhess-21-587-2021

Khouakhi, 2017, Contribution of Tropical Cyclones to Rainfall at the Global Scale, J. Clim., 30, 359, 10.1175/jcli-d-16-0298.1

Klotzbach, 2018, Continental U.S. Hurricane Landfall Frequency and Associated Damage: Observations and Future Risks, Bull. Am. Meteorol. Soc., 99, 1359, 10.1175/bams-d-17-0184.1

Kunkel, 2020, Precipitation Extremes: Trends and Relationships with Average Precipitation and Precipitable Water in the Contiguous United States, J. Appl. Meteorology Climatology, 59, 125, 10.1175/jamc-d-19-0185.1

Kurniadi, 2021, Independent ENSO and IOD Impacts on Rainfall Extremes over Indonesia, Int. J. Climatol, 41, 3640, 10.1002/joc.7040

Lai, 2020, Greater Flood Risks in Response to Slowdown of Tropical Cyclones over the Coast of China, Proc. Natl. Acad. Sci. USA, 117, 14751, 10.1073/pnas.1918987117

Leonard, 2014, A Compound Event Framework for Understanding Extreme Impacts, Wires Clim. Change, 5, 113, 10.1002/wcc.252

Li, 2015, Future Joint Probability Behaviors of Precipitation Extremes across China: Spatiotemporal Patterns and Implications for Flood and Drought Hazards, Glob. Planet. Change, 124, 107, 10.1016/j.gloplacha.2014.11.012

Li, 2013, GCMs-Based Spatiotemporal Evolution of Climate Extremes during the 21stcentury in China, J. Geophys. Res. Atmos., 118, 11017, 10.1002/jgrd.50851

Lian, 2013, Joint Impact of Rainfall and Tidal Level on Flood Risk in a Coastal City with a Complex River Network: A Case Study of Fuzhou City, China, Hydrol. Earth Syst. Sci., 17, 679, 10.5194/hess-17-679-2013

Lim, 2007, Southern Hemisphere winter Extratropical Cyclone Characteristics and Vertical Organization Observed with the ERA-40 Data in 1979-2001, J. Clim., 20, 2675, 10.1175/jcli4135.1

Liu, 2017, The Present-Day Simulation and Twenty-First-century Projection of the Climatology of Extratropical Transition in the North Atlantic, J. Clim., 30, 2739, 10.1175/jcli-d-16-0352.1

Mawdsley, 2016, Spatial and Temporal Variability and Long-Term Trends in Skew Surges Globally, Front. Mar. Sci., 3, 1, 10.3389/fmars.2016.00029

Menne, 2012, An Overview of the Global Historical Climatology Network-Daily Database, J. Atmos. Oceanic Tech., 29, 897, 10.1175/jtech-d-11-00103.1

Milly, 2008, Stationarity Is Dead: Whither Water Management?, Science, 319, 573, 10.1126/science.1151915

Moftakhari, 2017, Compounding Effects of Sea Level Rise and Fluvial Flooding, Proc. Natl. Acad. Sci. USA, 114, 9785, 10.1073/pnas.1620325114

Moftakhari, 2019, Linking Statistical and Hydrodynamic Modeling for Compound Flood hazard Assessment in Tidal Channels and Estuaries, Adv. Water Resour., 128, 28, 10.1016/j.advwatres.2019.04.009

Muis, 2018, Influence of El Niño-Southern Oscillation on Global Coastal Flooding, Earth's Future, 6, 1311, 10.1029/2018ef000909

Neumann, 2015, Future Coastal Population Growth and Exposure to Sea-Level Rise and Coastal Flooding - A Global Assessment, PLoS ONE, 10, 10.1371/journal.pone.0118571

Pawlowicz, 2002, Classical Tidal Harmonic Analysis Including Error Estimates in MATLAB Using T_TIDE, Comput. Geosciences, 28, 929, 10.1016/s0098-3004(02)00013-4

Pinto, 2014, Large-scale Dynamics Associated with Clustering of Extratropical Cyclones Affecting Western Europe, J. Geophys. Res. Atmos., 119, 13704, 10.1002/2014jd022305

Raymond, 2020, Understanding and Managing Connected Extreme Events, Nat. Clim. Chang., 10, 611, 10.1038/s41558-020-0790-4

Ridder, 2020, Global Hotspots for the Occurrence of Compound Events, Nat. Commun., 11, 1, 10.1038/s41467-020-20502-8

Sen, 1968, Estimates of the Regression Coefficient Based on Kendall’s Tau, J. Am. Stat. Assoc., 63, 1379, 10.1080/01621459.1968.10480934

She, 2015, Investigating the Variation and Non-stationarity in Precipitation Extremes Based on the Concept of Event-Based Extreme Precipitation, J. Hydrol., 530, 785, 10.1016/j.jhydrol.2015.10.029

Svensson, 2002, Dependence between Extreme Sea Surge, River Flow and Precipitation in Eastern Britain, Int. J. Climatol., 22, 1149, 10.1002/joc.794

Svensson, 2004, Dependence between Sea Surge, River Flow and Precipitation in South and West Britain, Hydrol. Earth Syst. Sci., 8, 973, 10.5194/hess-8-973-2004

Towey, 2018, Track and Circulation Analysis of Tropical and Extratropical Cyclones that Cause strong Precipitation and Streamflow Events in the New York City Watershed, J. Hydrometeorology, 19, 1027, 10.1175/jhm-d-17-0199.1

Tramblay, 2020, Observed Changes in Flood hazard in Africa, Environ. Res. Lett., 15, 1040b5, 10.1088/1748-9326/abb90b

Van Den Hurk, 2015, Analysis of a Compounding Surge and Precipitation Event in the Netherlands, Environ. Res. Lett., 10, 035001, 10.1088/1748-9326/10/3/035001

Vousdoukas, 2018, Global Probabilistic Projections of Extreme Sea Levels Show Intensification of Coastal Flood hazard, Nat. Commun., 9, 2360, 10.1038/s41467-018-04692-w

Wahl, 2015, Increasing Risk of Compound Flooding from Storm Surge and Rainfall for Major US Cities, Nat. Clim Change, 5, 1093, 10.1038/nclimate2736

Walsh, 2016, Tropical Cyclones and Climate Change, Wires Clim. Change, 7, 65, 10.1002/wcc.371

Wang, 2019, Forecast and Service Performance on Rapidly Intensification Process of Typhoons Rammasun (2014) and Hato (2017), Trop. Cyclone Res. Rev., 8, 18, 10.1016/j.tcrr.2019.07.002

Ward, 2018, Dependence between High Sea-Level and High River Discharge Increases Flood hazard in Global Deltas and Estuaries, Environ. Res. Lett., 13, 10.1088/1748-9326/aad400

Weisse, 2012, Changing North Sea Storm Surge Climate: An Increasing hazard?, Ocean Coastal Manag., 68, 58, 10.1016/j.ocecoaman.2011.09.005

Williams, 2016, Tide and Skew Surge independence: New Insights for Flood Risk, Geophys. Res. Lett., 43, 6410, 10.1002/2016gl069522

Wong, 2004, Tropical Cyclone Intensity in Vertical Wind Shear, J. Atmos. Sci., 61, 1859, 10.1175/1520-0469(2004)061<1859:tciivw>2.0.co;2

Woodworth, 2016, Towards a Global Higher-Frequency Sea Level Dataset, Geosci. Data J., 3, 50, 10.1002/gdj3.42

Xu, 2018, Joint Risk of Rainfall and Storm Surges during Typhoons in a Coastal City of Haidian Island, China, Int. J. Environ. Res. Public Health, 15, 10.3390/ijerph15071377

Xu, 2019, Compound Effects of Rainfall and Storm Tides on Coastal Flooding Risk, Stoch Environ. Res. Risk Assess., 33, 1249, 10.1007/s00477-019-01695-x

Yanase, 2015, Idealized Numerical Experiments on Cyclone Development in the Tropical, Subtropical, and Extratropical Environments, J. Atmos. Sci., 72, 3699, 10.1175/jas-d-15-0051.1

Yanase, 2019, Parameter Sweep Experiments on a Spectrum of Cyclones with Diabatic and Baroclinic Processes, J. Atmos. Sci., 76, 1917, 10.1175/jas-d-18-0232.1

You, 2011, Changes in Daily Climate Extremes in China and Their Connection to the Large Scale Atmospheric Circulation during 1961-2003, Clim. Dyn., 36, 2399, 10.1007/s00382-009-0735-0

Yu, 2019, Assessing the Potential Highest Storm Tide hazard in Taiwan Based on 40-year Historical Typhoon Surge Hindcasting, Atmosphere, 10, 10.3390/atmos10060346

Zhai, 2005, Trends in Total Precipitation and Frequency of Daily Precipitation Extremes over China, J. Clim., 18, 1096, 10.1175/jcli-3318.1

Zhang, , Is the Pearl River basin, China, Drying or Wetting? Seasonal Variations, Causes and Implications, Glob. Planet. Change, 166, 48, 10.1016/j.gloplacha.2018.04.005

Zhang, 2013, Copula-based Spatio-Temporal Patterns of Precipitation Extremes in China, Int. J. Climatol., 33, 1140, 10.1002/joc.3499

Zhang, , Dominant Role of Atlantic Multidecadal Oscillation in the Recent Decadal Changes in Western North Pacific Tropical Cyclone Activity, Geophys. Res. Lett., 45, 354, 10.1002/2017gl076397

Zhang, , Urbanization Exacerbated the Rainfall and Flooding Caused by hurricane Harvey in Houston, Nature, 563, 384, 10.1038/s41586-018-0676-z

Zhang, 2010, Tide-surge Interaction Intensified by the Taiwan Strait, J. Geophys. Res. Oceans, 115, 1, 10.1029/2009jc005762

Zhang, 2005, Trends in Middle East Climate Extreme Indices from 1950 to 2003, J. Geophys. Res. Atmospheres, 110, 1, 10.1029/2005jd006181

Zhang, 2011, Indices for Monitoring Changes in Extremes Based on Daily Temperature and Precipitation Data, Wires Clim. Change, 2, 851, 10.1002/wcc.147

Zheng, 2013, Quantifying the Dependence between Extreme Rainfall and Storm Surge in the Coastal Zone, J. Hydrol., 505, 172, 10.1016/j.jhydrol.2013.09.054

Zscheischler, 2018, Future Climate Risk from Compound Events, Nat. Clim Change, 8, 469, 10.1038/s41558-018-0156-3