Evolution of County Socio–Ecological Systems in Nature Reserves in Western China Over the Past 30 Years

Springer Science and Business Media LLC - Tập 32 - Trang 1809-1822 - 2023
Qinhua Wang1,2, Le Chen3,4, Penglong Wang1, Bao Wang1, Taibao Yang2
1Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
2Institute of Glaciology and Ecogeography, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, People’s Republic of China
3State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People’s Republic of China
4University of Chinese Academy of Sciences, Beijing, People’s Republic of China

Tóm tắt

The evolution process of socio–ecological systems from 1990 to 2020 in the Tianzhu Tibetan Autonomous County, located in the National Key Ecological Function Area of western China, was analyzed quantitatively based on resilience theory and methodology combined with catastrophe theory and adaptive cycle theory, through field investigation, questionnaires and interviews, social data collection and remote sensing data analysis. The results show that the coordinated development of socio–ecological systems has made great progress in recent decades in the study area, and the coordinated development of social systems and ecosystems has a high degree of coupling and a strong connection. Changes in ecosystem resilience regularly surpassed changes in the social system, indicating the significant impact and success of ecological protection policies and projects in recent decades. In future, improvements in the social sub-system will be the key to developing the socio–ecological system in the study area. Enhancing social sub-system resiliency, implementing transformational development and green industry development, and transforming and realizing ecological product values are important topics for further investigation in the study area. Substantial changes in policy, production, population and climate change are needed to promote the evolution of socio–ecological systems. Stable national policies are crucial for improving people's livelihoods and providing ecological protections.

Tài liệu tham khảo

Ban, N. C., Mills, M., Tam, J., Hicks, C. C., Klain, S., Stoeckl, N., Bottrill, M. C., Levine, J., Pressey, R. L., Satterfield, T., & Chan, K. M. (2013). A social–ecological approach to conservation planning: Embedding social considerations. Frontiers in Ecology and the Environment, 11, 194–202. Biggs, R., Peterson, G. D., & Rocha, J. (2018). The regime shifts database: A framework for analysing regime shifts in social-ecological systems. Ecology and Society, 23(3), 9. Biggs, R., Westley, F. R., & Carpenter, S. R. (2010). Navigating the back loop: Fostering social innovation and transformation in ecosystem management. Ecology and Society, 15(2), 9. Bodin, Ö. (2017). Collaborative environmental governance: Achieving collective action in social-ecological systems. Science, 357(6352), 1–8. Carpenter, S., Walker, B., Anderies, J. M., & Abel, N. (2001). From metaphor to measurement: Resilience of what to what? Ecosystems, 4(8), 765–781. Chapin, F. S., Folke, C., & Kofinas, G. P. (Eds.). (2009). Principles of ecosystem stewardship: Resilience-based natural resource management in a changing world (pp. 3–28). Springer. Cumming, G. S., & Allen, C. R. (2017). Protected areas as social-ecological systems: Perspectives from resilience and social-ecological systems theory. Ecological Applications, 27(6), 1709–1717. Cumming, G. S., Allen, C. R., Ban, N. C., Biggs, D., Biggs, H. C., Cumming, D. H. M., De Vos, A., Epstein, G., Etienne, M., Maciejewski, K., Mathevet, R., Moore, C., Nenadovic, M., & Schoon, M. (2015). Understanding protected area resilience: A multi-scale, social-ecological approach. Ecological Applications, 25, 299–319. Dakos, V., Carpenter, S. R., van Nes, E. H., & Scheffer, M. (2015). Resilience indicators: Prospects and limitations for early warnings of regime shifts. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1659), 20130263. Dakos, V., van Nes, E. H., D’Odorico, P., & Scheffer, M. (2012). Robustness of variance and autocorrelation as indicators of critical slowing down. Ecology, 93, 264–271. Fazey, I., Moug, P., Allen, S., Beckmann, K., Blackwood, D., Bonaventura, M., Burnett, K., Danson, M., Falconer, R., Gagnon, A. S., Harkness, R., Hodgson, A., Holm, L., Irvine, K. N., Low, R., Lyon, C., Moss, A., Moran, C., Naylor, L., … Wolstenholme, R. (2018). Transformation in a changing climate: A research agenda. Climate and Development, 10(3), 197–217. Fedele, G., Donatti, C. I., Harvey, C. A., Hannah, L., & Hole, D. G. (2019). Transformative adaptation to climate change for sustainable social-ecological systems. Environmental Science and Policy, 101, 116–125. Feola, G. (2015). Societal transformation in response to global environmental change: A review of emerging concepts. Ambio, 44(5), 376–390. Guerrero, A. M., Bennett, N. J., Wilson, K. A., Carter, N., Gill, D., Mills, M., Ives, C. D., Selinske, M. J., Larrosa, C., Bekessy, S., Januchowski-Hartley, F. A., Travers, H., Wyborn, C. A., & Nuno, A. (2018). Achieving the promise of integration in social-ecological research: A review and prospectus. Ecology and Society, 23(3), 386. Gunderson, L. H., & Holling, C. S. (Eds.). (2002). Panarchy: Understanding transformations in human and natural systems island press. D.C., USA. Holling, C. S. (2001). Understanding the complexity of economic, ecological, and social systems. Ecosystems, 4(5), 390–405. Huang, H. Q., Zhen, L., & Yan, H. M. (2009). Current status of the vulnerability of land systems in china and some considerations on strategies for resilience building. Bulletin of Chinese Academy of Sciences, 24(6), 649–654. In Chinese with English Abstract. Li, X. P., Wang, C. P., Zou, S. B., Yue, W., Luo, S., Wang, W. S., Qin, Y. H., Sang, J., Qian, J. K., & Wang, C. M. (2022). Evaluation on ecological resilience in water conservation area in the upper Yellow River based on AHP: A case study of the Gannan and Linxia region. Journal of desert research, 42(6), 85–93. In Chinese with English Abstract. Li, Y., Kappas, M., & Li, Y. F. (2018). Exploring the coastal urban resilience and transformation of coupled human-environment systems. Journal of Cleaner Production, 195, 1505–1511. Li, Y. J., Yang, Z. H., Man, D. Q., Guo, S. J., Du, J., & Wang, J. Q. (2012). Degradation causes and sustainable development of grassland in Tianzhu County. Pratacultural, Science, 29(11), 1678–1683. In Chinese. Liu, B. J., Zeng, J. Y., & Zhao, Y. Y. (2021). Quantitative analysis of tourism policy and its impact. Inquiry into Economic Issues, 12, 71–82. In Chinese with English Abstract. Norgaard, R. B., Kallis, G., & Kiparsky, M. (2009). Collectively engaging complex socio-ecological systems: Re-envisioning science, governance, and the California Delta. Environmental Science and Policy, 12(6), 644–652. Ostrom, E. (2009). A general framework for analyzing sustainability of social-ecological systems. Science, 325(5939), 419–422. Pacheco-Romero, M., Kuemmerle, T., Levers, C., Alcaraz-Segura, D., & Cabello, J. (2021). Integrating inductive and deductive analysis to identify and characterize archetypical social-ecological systems and their changes. Landscape and Urban Planning, 215, 104199. https://doi.org/10.1016/j.landurbplan.2021.104199 Poston, T., & Ian, S. (1978). Catastrophe theory and application. Pitman. Reyers, B., Folke, C., Moore, M. L., Biggs, R., & Galaz, V. (2018). Social-ecological systems insights for navigating the dynamics of the Anthropocene. Annual Review of Environment and Resources, 43, 267–289. Robinson, B. E., Li, P., & Hou, X. Y. (2017). Institutional change in social-ecological systems: The evolution of grassland management in Inner Mongolia. Global Environmental Change, 47, 64–75. Rocha, J. C., Peterson, G. D., & Biggs, R. (2015). Regime shifts in the Anthropocene: drivers, risks, and resilience. PLoS One, 10(8), e0134639. Rocha, J. C., Peterson, G. D., Bodin, Ö., & Levin, S. (2018). Cascading regime shifts within and across scales. Science, 362, 1379–1383. Scheffer, M., Bascompte, J., Brock, W. A., Brovkin, V., Carpenter, S. R., Dakos, V., Held, H., van Nes, E. H., Rietkerk, M., & Sugihara, G. (2009). Early-warning signals for critical transitions. Nature, 461, 53–59. Scheffer, M., & Carpenter, S. R. (2003). Catastrophic regime shifts in ecosystems: Linking theory to observation. Trends in Ecology and Evolution, 18, 648–656. Scheffer, M., Carpenter, S., Foley, J. A., Folke, C., & Walker, B. (2001). Catastrophic shifts in ecosystems. Nature, 413, 591–596. Scheffer, M., Carpenter, S. R., Lenton, T. M., Bascompte, J., Brock, W., Dakos, V., van de Koppel, J., van de Leemput, I. A., Levin, S. A., van Nes, E. H., Pascual, M., & Vandermeer, J. (2012). Anticipating critical transitions. Science, 338(6105), 344–348. https://doi.org/10.1126/science.1225244 Scheffer, M., & Jeppesen, E. (2007). Regime shifts in shallow lakes. Ecosystems, 10, 1–3. Sun, C. Z., Hu, D. L., & Yang, L. (2011). Recovery capacity of groundwater system in lower Liaohe River Plain. Advances in Science and Technology of Water Resources, 31(05), 5–10. Sun, X., Liu, P., & Li, P. (2014). The dynamic state of the NDVI index in Xilingol grassland during 1981–2010. Chinese Journal Grassland, 36(6), 23–28. In Chinese with English Abstract. Thorn, R. (1969). Topological models in biology. Topology, 8, 313–333. Wang, S. Q., Zhang, Q. R., & Ma, C. (2003). Reasons for degradation of natural grassland in tianzhu county and countermeasures. Pratacultural Science, 06, 7–8. In Chinese. Wei, Y., Ray, I., Western, A. W., & Lu, Z. X. (2018). Understanding ourselves and the environment in which we live. Current Opinion in Environmental Sustainability, 33, 161–166. Wu, X. T., Wei, Y. P., Fu, B. J., Wang, S., & Moran, E. F. (2020). Evolution and effects of the social-ecological system over a millennium in China’s Loess Plateau. Science Advances, 6(41), eabc0276. Zeeman, E. C. (1976). Catastrophe theory. Scientific American, 234(4), 65–83.