Evolution of α- and β-Globin genes and their regulatory systems in light of the hypothesis of domain organization of the genome
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bodnar, J. W. (1988) A domain model for eukaryotic DNA organization: a molecular basis for cell differentiation and chromosome evolution, J. Theor. Biol., 132, 479–507.
Razin, S. V., and Vassetzky, Y. S. (1992) Domain organization of eukaryotic genome, Cell Biol. Int. Rep., 16, 697–708.
Razin, S. V., and Ioudinkova, E. S. (2007) Mechanisms controlling activation of the alpha-globin gene domain in chicken erythroid cells, Biochemistry (Moscow), 72, 467–470.
Razin, S. V., Farrell, C. M., and Recillas-Targa, F. (2003) Genomic domains and regulatory elements operating at the domain level, Int. Rev. Cytol., 226, 63–125.
Wallace, J. A., and Felsenfeld, G. (2007) We gather together: insulators and genome organization, Curr. Opin. Genet. Dev., 17, 400–407.
Dillon, N., and Sabbatini, P. (2000) Functional gene expression domains: defining the functional units of eukaryotic gene regulation, BioEssays, 22, 657–665.
Miller, J. L. (2002) Hemoglobin switching and modulation: genes, cells, and signals, Curr. Opin. Hematol., 9, 87–92.
Razin, S. V., Ulianov, S. V., Ioudinkova, E. S., Gushchanskaya, E. S., Gavrilov, A. A., and Iarovaia, O. V. (2012) Domains of α- and β-globin genes in the context of the structural-functional organization of the eukaryotic genome, Biochemistry (Moscow), 77, 1409–1423.
Craddock, C. F., Vyas, P., Sharpe, J. A., Ayyub, H., Wood, W. G., and Higgs, D. R. (1995) Contrasting effects of alpha and beta globin regulatory elements on chromatin structure may be related to their different chromosomal environment, EMBO J., 14, 1718–1726.
Recillas-Targa, F., and Razin, S. V. (2001) Chromatin domains and regulation of gene expression: familiar and enigmatic clusters of chicken globin genes, Crit. Rev. Eukaryot. Gene Expr., 11, 227–242.
Hughes, J. R., Cheng, J. F., Ventress, N., Prabhakar, S., Clark, K., Anguita, E., De Gobbi, M., de Jong, P., Rubin, E., and Higgs, D. R. (2005) Annotation of cis-regulatory elements by identification, subclassification, and functional assessment of multispecies conserved sequences, Proc. Natl. Acad. Sci. USA, 102, 9830–9835.
Flint, J., Tufarelli, C., Peden, J., Clark, K., Daniels, R. J., Hardison, R., Miller, W., Philipsen, S., Tan-Un, K. C., and McMorrow, T. (2001) Comparative genome analysis delimits a chromosomal domain and identifies key regulatory elements in the alpha globin cluster, Hum. Mol. Genet., 10, 371–382.
Tufarelli, C., Hardison, R., Miller, W., Hughes, J., Clark, K., Ventress, N., Frischauf, A. M., and Higgs, D. R. (2004) Comparative analysis of the alpha-like globin clusters in mouse, rat, and human chromosomes indicates a mechanism underlying breaks in conserved synteny, Genome Res., 14, 623–630.
Chen, H., Lowrey, C. H., and Stamatoyannopoulos, G. (1997) Analysis of enhancer function of the HS-40 core sequence of the human alpha-globin cluster, Nucleic Acids Res., 25, 2917–2922.
Higgs, D. R., Wood, W. G., Jarman, A. P., Sharpe, J., Lida, J., Pretorius, I.-M., and Ayyub, H. (1990) A major positive regulatory region located far upstream of the human α-globin gene locus, Gene Dev., 4, 1588–1601.
Jarman, A. P., Wood, W. G., Sharpe, J. A., Gourdon, G., Ayyub, H., and Higgs, D. R. (1991) Characterization of the major regulatory element upstream of the human α-globin gene cluster, Mol. Cell Biol., 11, 4679–4689.
Ioudinkova, E. S., Ulianov, S. V., Bunina, D., Iarovaia, O. V., Gavrilov, A. A., and Razin, S. V. (2011) The inactivation of the π gene in chicken erythroblasts of adult lineage is not mediated by packaging of the embryonic part of the α-globin gene domain into a repressive heterochromatin-like structure, Epigenetics, 6, 1481–1488.
Knezetic, J. A., and Felsenfeld, G. (1993) Mechanism of developmental regulation of alpha pi, the chicken embryonic alpha-globin gene, Mol. Cell Biol., 13, 4632–4639.
Sabath, D. E., Spangler, E. A., Rubin, E. M., and Stamatoyannopoulos, G. (1993) Analysis of the human zeta-globin gene promoter in transgenic mice, Blood, 82, 2899–2905.
Singal, R., and van Wert, J. M. (2001) De novo methylation of an embryonic globin gene during normal development is strand specific and spreads from the proximal transcribed region, Blood, 98, 3441–3446.
Singal, R., van Wert, J. M., and Ferdinand, L., Jr. (2002) Methylation of alpha-type embryonic globin gene alpha pi represses transcription in primary erythroid cells, Blood, 100, 4217–4222.
Garrick, D., De Gobbi, M., Samara, V., Rugless, M., Holland, M., Ayyub, H., Lower, K., Sloane-Stanley, J., Gray, N., and Koch, C. (2008) The role of the polycomb complex in silencing alpha-globin gene expression in nonerythroid cells, Blood, 112, 3889–3899.
Hughes, J. R., Cheng, J. F., Ventress, N., and Prabhakar, S. (2000) Annotation of cis-regulatory elements by identification, subclassification, and functional assessment of multispecies conserved sequences, Proc. Natl. Acad. Sci. USA, 102, 9830–9835.
Gavrilov, A. A., and Razin, S. V. (2008) Spatial configuration of the chicken α-globin gene domain: immature and active chromatin hubs, Nucleic Acids Res., 36, 4629–4640.
Vernimmen, D., De Gobbi, M., Sloane-Stanley, J. A., Wood, W. G., and Higgs, D. R. (2007) Long-range chromosomal interactions regulate the timing of the transition between poised and active gene expression, EMBO J., 26, 2041–2051.
Vernimmen, D., Marques-Kranc, F., Sharpe, J. A., Sloane-Stanley, J. A., Wood, W. G., Wallace, H. A., Smith, A. J., and Higgs, D. R. (2009) Chromosome looping at the human alpha-globin locus is mediated via the major upstream regulatory element (HS-40), Blood, 114, 4253–4260.
Ioudinkova, E. S., and Razin, S. V. (2003) Regulatory systems of genome domains with vague boundaries, Genetika, 39, 182–186.
Anguita, E., Johnson, C. A., Wood, W. G., Turner, B. M., and Higgs, D. R. (2001) Identification of a conserved erythroid specific domain of histone acetylation across the alpha-globin gene cluster, Proc. Natl. Acad. Sci. USA, 98, 12114–12119.
De Gobbi, M., Anguita, E., Hughes, J., Sloane-Stanley, J. A., Sharpe, J. A., Koch, C. M., Dunham, I., Gibbons, R. J., Wood, W. G., and Higgs, D. R. (2007) Tissue-specific histone modification and transcription factor binding in alpha globin gene expression, Blood, 110, 4503–4510.
Philonenko, E. S., Klochkov, D. B., Borunova, V. V., Gavrilov, A. A., Razin, S. V., and Iarovaia, O. V. (2009) TMEM8 — a non-globin gene entrapped in the globin web, Nucleic Acids Res., 37, 7394–7406.
Forrester, W. C., Epner, E., Driscoll, M. C., Enver, T., Brice, M., Papayannopoulou, T., and Groudine, M. (1990) A deletion of the human β-globin locus activation region causes a major alteration in chromatin structure and replication across the entire β-globin locus, Gene Dev., 4, 1637–1649.
Grosveld, F., van Assandelt, G. B., Greaves, D. R., and Kollias, B. (1987) Position-independent, high-level expression of the human β-globin gene in transgenic mice, Cell, 51, 975–985.
Hardison, R., Slightom, J. L., Gumicio, D. L., Goodman, M., Stojanovic, N., and Miller, W. (1997) Locus control regions of mammalian beta-globin gene clusters: combining phylogenetic analyses and experimental results to gain functional insights, Gene, 205, 73–94.
Li, Q., Zhou, B., Powers, P., Enver, T., and Stamatoyannopoulos, G. (1990) β-Globin locus activations regions: conservation of organization, structure and function, Proc. Natl. Acad. Sci. USA, 87, 8207–8211.
Mason, M. M., Lee, E., Westphal, H., and Reitman, M. (1995) Expression of the chicken β-globin cluster in mice: correct developmental expression and distributed control, Mol. Cell Biol., 15, 407–414.
Talbot, D., Collis, P., Antoniou, M., Vidal, M., Grosveld, F., and Greaves, D. R. (1989) A dominant control region from the human β-globin locus conferring integration siteindependent gene expression, Nature, 338, 352–355.
Dillon, N., and Grosveld, F. (1993) Transcriptional regulation of multigene loci: multilevel control, Trends Genet., 9, 134–137.
Bulger, M., van Doorninck, J. H., Saitoh, N., Telling, A., Farrell, C., Bender, M. A., Felsenfeld, G., Axel, R., Groudine, M., and von Doorninck, J. H. (1999) Conservation of sequence and structure flanking the mouse and human beta-globin loci: the beta-globin genes are embedded within an array of odorant receptor genes, Proc. Natl. Acad. Sci. USA, 96, 5129–5134.
Farrell, C. M., West, A. G., and Felsenfeld, G. (2002) Conserved CTCF insulator elements flank the mouse and human beta-globin loci, Mol. Cell Biol., 22, 3820–3831.
Li, Q., and Stamatoyannopoulos, G. (1994) Hypersensitive site 5 of the human beta locus control region functions as a chromatin insulator, Blood, 84, 1399–1401.
Tanimoto, K., Liu, Q., Bungert, J., and Engel, J. D. (1999) Effects of altered gene order or orientation of the locus control region on human beta-globin gene expression in mice, Nature, 398, 344–348.
Ulianov, S. V., Gavrilov, A. A., and Razin, S. V. (2012) Spatial organization of the chicken beta-globin gene domain in erythroid cells of embryonic and adult lineages, Epigenetics Chromatin, 5, 16.
Palstra, R. J., Tolhuis, B., Splinter, E., Nijmeijer, R., Grosveld, F., and de Laat, W. (2003) The beta-globin nuclear compartment in development and erythroid differentiation, Nat. Genet., 35, 190–194.
Splinter, E., Heath, H., Kooren, J., Palstra, R. J., Klous, P., Grosveld, F., Galjart, N., and de Laat, W. (2006) CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus, Genes Dev., 20, 2349–2354.
Tolhuis, B., Palstra, R. J., Splinter, E., Grosveld, F., and de Laat, W. (2002) Looping and interaction between hypersensitive sites in the active beta-globin locus, Mol. Cell, 10, 1453–1465.
Forsberg, E. C., and Bresnick, E. H. (2001) Histone acetylation beyond promoters: long-range acetylation patterns in the chromatin world, BioEssays, 23, 820–830.
Gribnau, G., Diderich, K., Pruzina, S., Calzolari, R., and Frazer, P. (2000) Intergenic transcription and developmental remodelling of chromatin subdomains in the human β-globin locus, Mol. Cell, 5, 377–386.
Johnson, K. D., Christensen, H. M., Zhao, B., and Bresnick, E. H. (2001) Distinct mechanisms control RNA polymerase II recruitment to a tissue-specific locus control region and a downstream promoter, Mol. Cell, 8, 465–471.
Johnson, K. D., Grass, J. A., Boyer, M. E., Kiekhaefer, C. M., Blobel, G. A., Weiss, M. J., and Bresnick, E. H. (2002) Cooperative activities of hematopoietic regulators recruit RNA polymerase II to a tissue-specific chromatin domain, Proc. Natl. Acad. Sci. USA, 99, 11760–11765.
Kiekhaefer, C. M., Grass, J. A., Johnson, K. D., Boyer, M. E., and Bresnick, E. H. (2002) Hematopoietic-specific activators establish an overlapping pattern of histone acetylation and methylation within a mammalian chromatin domain, Proc. Natl. Acad. Sci. USA, 99, 14309–14314.
Sawado, T., Igarashi, K., and Groudine, M. (2001) Activation of beta-major globin gene transcription is associated with recruitment of NF-E2 to the beta-globin LCR and gene promoter, Proc. Natl. Acad. Sci. USA, 98, 10226–10231.
Schubeler, D., Francastel, C., Cimbora, D. M., Reik, A., Martin, D. I. K., and Groudine, M. (2000) Nuclear localization and histone acetilation: a pathway for chromatin opening and transcription activation of the human β-globin locus, Gene Dev., 14, 940–950.
De Laat, W., and Grosveld, F. (2003) Spatial organization of gene expression: the active chromatin hub, Chromosome Res., 11, 447–459.
De Laat, W., Klous, P., Kooren, J., Noordermeer, D., Palstra, R. J., Simonis, M., Splinter, E., and Grosveld, F. (2008) Three-dimensional organization of gene expression in erythroid cells, Curr. Top. Dev. Biol., 82, 117–139.
Prioleau, M.-N., Nony, P., Simpson, M., and Felsenfeld, G. (1999) An insulator element and condensed chromatin region separate the chicken β-globin locus from an independently regulated erythroid-specific folate receptor gene, EMBO J., 18, 4035–4048.
Opazo, J. C., Butts, G. T., Nery, M. F., Storz, J. F., and Hoffmann, F. G. (2013) Whole-genome duplication and the functional diversification of teleost fish hemoglobins, Mol. Biol. Evol., 30, 140–153.
Ganis, J. J., Hsia, N., Trompouki, E., de Jong, J. L., DiBiase, A., Lambert, J. S., Jia, Z., Sabo, P. J., Weaver, M., Sandstrom, R., Stamatoyannopoulos, J. A., Zhou, Y., and Zon, L. I. (2012) Zebrafish globin switching occurs in two developmental stages and is controlled by the LCR, Dev. Biol., 366, 185–194.
Brownlie, A., Hersey, C., Oates, A. C., Paw, B. H., Falick, A. M., Witkowska, H. E., Flint, J., Higgs, D., Jessen, J., Bahary, N., Zhu, H., Lin, S., and Zon, L. (2003) Characterization of embryonic globin genes of the zebrafish, Dev. Biol., 255, 48–61.
Tiedke, J., Gerlach, F., Mitz, S. A., Hankeln, T., and Burmester, T. (2011) Ontogeny of globin expression in zebrafish (Danio rerio), J. Comp. Physiol. B, 181, 1011–1021.
Davidson, A. J., and Zon, L. I. (2004) The “definitive” (and “primitive”) guide to zebrafish hematopoiesis, Oncogene, 23, 7233–7246.
Maruyama, K., Ishikawa, Y., Yasumasu, S., and Iuchi, I. (2007) Globin gene enhancer activity of a DNase I hypersensitive site-40 homolog in medaka Oryzias latipes, Zool. Sci., 24, 997–1004.
Maruyama, K., Yasumasu, S., Naruse, K., Mitani, H., Shima, A., and Iuchi, I. (2004) Genomic organization and developmental expression of globin genes in the teleost Oryzias latipes, Gene, 335, 89–100.
Vinogradov, S. N., Hoogewijs, D., Bailly, X., Arredondo-Peter, R., Gough, J., Dewilde, S., Moens, L., and Vanfleteren, J. R. (2006) A phylogenomic profile of globins, BMC Evol. Biol., 6, 31.
Hoffmann, F. G., Opazo, J. C., and Storz, J. F. (2012) Evolution of the globin gene family in deuterostomes: lineage-specific patterns of diversification and attrition, Mol. Biol. Evol., 29, 303–312.
Hoffmann, F. G., Opazo, J. C., and Storz, J. F. (2010) Gene cooption and convergent evolution of oxygen transport hemoglobins in jawed and jawless vertebrates, Proc. Natl. Acad. Sci. USA, 107, 14274–14279.
Czelusniak, J., Goodman, M., Hewett-Emmett, D., Weiss, M. L., Venta, P. J., and Tashian, R. E. (1982) Phylogenetic origins and adaptive evolution of avian and mammalian haemoglobin genes, Nature, 298, 297–300.
Goodman, M., Moore, G. W., and Matsuda, G. (1975) Darwinian evolution in the genealogy of haemoglobin, Nature, 253, 603–608.
Goodman, M., Miyamoto, M. M., and Czelusniak, J. (1987) Globins: a case study in molecular phylogeny, in Molecules and Morphology in Evolution: Conflict or Compromise? (Patterson, C., ed.) Cambridge University Press, Cambridge, UK, pp. 140–176.
Hardison, R. S. (2005) in Encyclopedia of Life Sciences, John Wiley & Sons, Ltd. ( www.els.net ).
De Leo, A. A., Wheeler, D., Lefevre, C., Cheng, J. F., Hope, R., Kuliwaba, J., Nicholas, K. R., Westerman, M., and Graves, J. A. (2005) Sequencing and mapping hemoglobin gene clusters in the Australian model dasyurid marsupial Sminthopsis macroura, Cytogenet. Genome Res., 108, 333–341.
Patel, V. S., Cooper, S. J., Deakin, J. E., Fulton, B., Graves, T., Warren, W. C., Wilson, R. K., and Graves, J. A. (2008) Platypus globin genes and flanking loci suggest a new insertional model for beta-globin evolution in birds and mammals, BMC Biol., 6, 34.
Hoffmann, F. G., Opazo, J. C., and Storz, J. F. (2008) New genes originated via multiple recombinational pathways in the beta-globin gene family of rodents, Mol. Biol. Evol., 25, 591–602.
Wheeler, D., Hope, R., Cooper, S. B., Dolman, G., Webb, G. C., Bottema, C. D., Gooley, A. A., Goodman, M., and Holland, R. A. (2001) An orphaned mammalian beta-globin gene of ancient evolutionary origin, Proc. Natl. Acad. Sci. USA, 98, 1101–1106.
Wheeler, D., Hope, R. M., Cooper, S. B., Gooley, A. A., and Holland, R. A. (2004) Linkage of the beta-like omegaglobin gene to alpha-like globin genes in an Australian marsupial supports the chromosome duplication model for separation of globin gene clusters, J. Mol. Evol., 58, 642–652.
Hoffmann, F. G., and Storz, J. F. (2007) The alphaD-globin gene originated via duplication of an embryonic alphalike globin gene in the ancestor of tetrapod vertebrates, Mol. Biol. Evol., 24, 1982–1990.