Evolution and influence of GaN/AlN heterointerface during the thinning process of GaN film

Applied Surface Science - Tập 608 - Trang 155151 - 2023
Yuqi Zhou1, Yuhua Huang1, Jinming Li1, Fulong Zhu1
1Institute of Microsystems, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei Province 430074, PR China

Tài liệu tham khảo

Roccaforte, 2019, An overview of normally-off GaN-based high electron mobility transistors, Materials, 12, 1599, 10.3390/ma12101599 Zeng, 2018, A comprehensive review of recent progress on GaN high electron mobility transistors: devices, fabrication and reliability, Electron.-Switz., 7, 377, 10.3390/electronics7120377 Chen, 2020, Microwave performance of ‘Buffer-Free’ GaN-on-SiC high electron mobility transistors, IEEE Electr. Dev. L, 41, 828, 10.1109/LED.2020.2988074 Herfurth, 2013, Ultrathin Body InAlN/GaN HEMTs for High-Temperature (600℃) Electronics, IEEE Electr. Dev. L, 34, 496, 10.1109/LED.2013.2245625 Lu, 2019, Transmorphic epitaxial growth of AlN nucleation layers on SiC substrates for high-breakdown thin GaN transistors, Appl. Phys. Lett., 115, 221601, 10.1063/1.5123374 Manoi, 2010, Benchmarking of Thermal boundary resistance in AlGaN/GaN HEMTs on SiC substrates: implications of the nucleation layer microstructure, IEEE Electr. Dev. L, 31, 1395, 10.1109/LED.2010.2077730 Kim, 2018, Challenging endeavor to integrate gallium and carbon via direct bonding to evolve GaN on diamond architecture, Scripta Mater., 142, 138, 10.1016/j.scriptamat.2017.08.041 Horng, 2008, Improved thermal management of GaN/sapphire light-emitting diodes embedded in reflective heat spreaders, Appl. Phys. Lett., 93, 111907, 10.1063/1.2983740 Malik, 2018, Role of AlGaN/GaN interface traps on negative threshold voltage shift in AlGaN/GaN HEMT, Solid State Electron., 142, 8, 10.1016/j.sse.2018.01.002 Li, 2022, Anisotropy dependence of material removal and deformation mechanisms during nanoscratch of gallium nitride single crystals on (0001) plane, Appl. Surf. Sci., 578, 152028, 10.1016/j.apsusc.2021.152028 Huang, 2021, Investigation of vibration-assisted nano-grinding of gallium nitride via molecular dynamics, Mat. Sci. Semicon. Proc., 121, 105372, 10.1016/j.mssp.2020.105372 Zhang, 2021, Effects of initial temperature on the damage of GaN during nanogrinding, Appl. Surf. Sci., 556, 149771, 10.1016/j.apsusc.2021.149771 Wang, 2020, Molecular dynamics study on deformation behaviour of monocrystalline GaN during nano abrasive machining, Appl. Surf. Sci., 510, 145492, 10.1016/j.apsusc.2020.145492 Huang, 2020, Investigation on gallium nitride with N-vacancy defect nano-grinding by molecular dynamics, J. Manuf. Process, 57, 153, 10.1016/j.jmapro.2020.06.018 Xu, 2019, A molecular dynamic study of nano-grinding of a monocrystalline copper-silicon substrate, Appl. Surf. Sci., 493, 933, 10.1016/j.apsusc.2019.07.076 Xu, 2019, Study on subsurface damage of wafer silicon containing through silicon via in thinning, Euro. Phys. J. Plus, 134, 234, 10.1140/epjp/i2019-12591-4 Bao, 2022, Phonon transport across GaN/AlN interface: Interfacial phonon modes and phonon local non-equilibrium analysis, Int. J. Heat Mass Trans., 183, 122090, 10.1016/j.ijheatmasstransfer.2021.122090 Hu, 2011, Large “near junction” thermal resistance reduction in electronics by interface nanoengineering, Int. J. Heat Mass Trans., 10.1016/j.ijheatmasstransfer.2011.08.027 Polanco, 2019, Oak Ridge National Lab. ORNL, Phonon thermal conductance across GaN-AlN interfaces from first principles, Phys. Rev. B, 99, 075202, 10.1103/PhysRevB.99.075202 Lee, 2017, The role of optical phonons in intermediate layer-mediated thermal transport across solid interfaces, Phys. Chem. Chem. Phys., 19, 18407, 10.1039/C7CP02982A Li, 2020, Interface structure and deformation mechanisms of AlN/GaN multilayers, Ceram. Int., 46, 11556, 10.1016/j.ceramint.2020.01.182 Chen, 2018, Effect of dynamic evolution of misfit dislocation pattern on dislocation nucleation and shear sliding at semi-coherent bimetal interfaces, Acta Mater., 143, 107, 10.1016/j.actamat.2017.10.012 Cho, 2012, Low thermal resistances at GaN–SiC interfaces for HEMT technology, IEEE Electr. Dev. L, 33, 378, 10.1109/LED.2011.2181481 Cho, 2013, Improved thermal interfaces of GaN–diamond composite substrates for HEMT applications, IEEE Trans. Compon. Packag. Manuf. Technol., 3, 79, 10.1109/TCPMT.2012.2223818 Li, 2022, Molecular dynamics simulation of friction, lubrication, and tool wear during nanometric machining, Mach. Tribol. Elsevier, 187, 10.1016/B978-0-12-819889-6.00007-1 Wang, 2017, Investigation into nanoscratching mechanical response of AlCrCuFeNi high-entropy alloys using atomic simulations, Appl. Surf. Sci., 416, 470, 10.1016/j.apsusc.2017.04.009 Zhang, 2022, The deformation mechanism of gallium-faces and nitrogen-faces gallium nitride during nanogrinding, Int. J. Mech. Sci., 214, 106888, 10.1016/j.ijmecsci.2021.106888 Li, 2015, The effect of rough surface on nanoscale high speed grinding by a molecular dynamics simulation, Comp. Mater. Sci., 98, 252, 10.1016/j.commatsci.2014.10.069 Guo, 2020, Temperature effect on mechanical response of c-plane monocrystalline gallium nitride in nanoindentation: a molecular dynamics study, Ceram. Int., 46, 12686, 10.1016/j.ceramint.2020.02.035 Béré, 2006, On the atomic structures, mobility and interactions of extended defects in GaN: dislocations, tilt and twin boundaries, Philos. Mag. (2003. Print), 86, 2159, 10.1080/14786430600640486 Zhou, 2013, Relationship of thermal boundary conductance to structure from an analytical model plus molecular dynamics simulations, Phys. Rev. B, Condens. Matter Mater. Phys., 87, 10.1103/PhysRevB.87.094303 Zhou, 2013, Molecular dynamics studies of material property effects on thermal boundary conductance, Phys. Chem. Chem. Phys.: PCCP, 15, 1178, 10.1039/c3cp51131f Zhang, 2019, Molecular dynamics simulations of AlN deposition on GaN substrate, Mol. Phys., 117, 1758, 10.1080/00268976.2019.1587025 Qian, 2019, Dependence of tribological behavior of GaN crystal on loading direction: a molecular dynamics study, J. Appl. Phys., 126, 075108, 10.1063/1.5093227 Mayo, 1990, DREIDING: a generic force field for molecular simulations, J. Phys. Chem., 94, 8897, 10.1021/j100389a010 Plimpton, 1995, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., 117, 1, 10.1006/jcph.1995.1039 Stukowski, 2010, Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool, Model. Simul. Mater. Sci., 18, 015012, 10.1088/0965-0393/18/1/015012 Maras, 2016, Global transition path search for dislocation formation in Ge on Si(001), Comput. Phys. Commun., 205, 13, 10.1016/j.cpc.2016.04.001 Qian, 2017, Compression-induced phase transition of GaN bulk from wurtzite phase to five-fold coordination hexagonal phase, AIP Adv., 7, 095312, 10.1063/1.4989620 Lianfeng, 2022, Analysis of the influence of tool radius on mechanical state of monocrystalline silicon during nano-cutting, Mech. Adv. Mater. Struc., 29, 1708, 10.1080/15376494.2020.1837308 Kazan, 2010, Thermal conductance of the interfaces between the III-nitride materials and their substrates: effects of intrinsic material properties and interface conditions, Surf. Sci. Rep., 65, 111, 10.1016/j.surfrep.2010.02.001 Qihong, 2017, Mechanisms of subsurface damage and material removal during high speed grinding processes in Ni/Cu multilayers using a molecular dynamics study, RSC Adv., 7, 42047, 10.1039/C7RA06975H Dai, 2017, A numerical study of ultraprecision machining of monocrystalline silicon with laser nano-structured diamond tools by atomistic simulation, Appl. Surf. Sci., 393, 405, 10.1016/j.apsusc.2016.10.014 Li, 2018, Subsurface damages beneath fracture pits of reaction-bonded silicon carbide after ultra-precision grinding, Appl. Surf. Sci., 448, 341, 10.1016/j.apsusc.2018.04.038 Tian, 2019, Study on nanomechanical properties of 4H-SiC and 6H-SiC by molecular dynamics simulations, Ceram. Int., 45, 21998, 10.1016/j.ceramint.2019.07.214