Evolution and influence of GaN/AlN heterointerface during the thinning process of GaN film
Tài liệu tham khảo
Roccaforte, 2019, An overview of normally-off GaN-based high electron mobility transistors, Materials, 12, 1599, 10.3390/ma12101599
Zeng, 2018, A comprehensive review of recent progress on GaN high electron mobility transistors: devices, fabrication and reliability, Electron.-Switz., 7, 377, 10.3390/electronics7120377
Chen, 2020, Microwave performance of ‘Buffer-Free’ GaN-on-SiC high electron mobility transistors, IEEE Electr. Dev. L, 41, 828, 10.1109/LED.2020.2988074
Herfurth, 2013, Ultrathin Body InAlN/GaN HEMTs for High-Temperature (600℃) Electronics, IEEE Electr. Dev. L, 34, 496, 10.1109/LED.2013.2245625
Lu, 2019, Transmorphic epitaxial growth of AlN nucleation layers on SiC substrates for high-breakdown thin GaN transistors, Appl. Phys. Lett., 115, 221601, 10.1063/1.5123374
Manoi, 2010, Benchmarking of Thermal boundary resistance in AlGaN/GaN HEMTs on SiC substrates: implications of the nucleation layer microstructure, IEEE Electr. Dev. L, 31, 1395, 10.1109/LED.2010.2077730
Kim, 2018, Challenging endeavor to integrate gallium and carbon via direct bonding to evolve GaN on diamond architecture, Scripta Mater., 142, 138, 10.1016/j.scriptamat.2017.08.041
Horng, 2008, Improved thermal management of GaN/sapphire light-emitting diodes embedded in reflective heat spreaders, Appl. Phys. Lett., 93, 111907, 10.1063/1.2983740
Malik, 2018, Role of AlGaN/GaN interface traps on negative threshold voltage shift in AlGaN/GaN HEMT, Solid State Electron., 142, 8, 10.1016/j.sse.2018.01.002
Li, 2022, Anisotropy dependence of material removal and deformation mechanisms during nanoscratch of gallium nitride single crystals on (0001) plane, Appl. Surf. Sci., 578, 152028, 10.1016/j.apsusc.2021.152028
Huang, 2021, Investigation of vibration-assisted nano-grinding of gallium nitride via molecular dynamics, Mat. Sci. Semicon. Proc., 121, 105372, 10.1016/j.mssp.2020.105372
Zhang, 2021, Effects of initial temperature on the damage of GaN during nanogrinding, Appl. Surf. Sci., 556, 149771, 10.1016/j.apsusc.2021.149771
Wang, 2020, Molecular dynamics study on deformation behaviour of monocrystalline GaN during nano abrasive machining, Appl. Surf. Sci., 510, 145492, 10.1016/j.apsusc.2020.145492
Huang, 2020, Investigation on gallium nitride with N-vacancy defect nano-grinding by molecular dynamics, J. Manuf. Process, 57, 153, 10.1016/j.jmapro.2020.06.018
Xu, 2019, A molecular dynamic study of nano-grinding of a monocrystalline copper-silicon substrate, Appl. Surf. Sci., 493, 933, 10.1016/j.apsusc.2019.07.076
Xu, 2019, Study on subsurface damage of wafer silicon containing through silicon via in thinning, Euro. Phys. J. Plus, 134, 234, 10.1140/epjp/i2019-12591-4
Bao, 2022, Phonon transport across GaN/AlN interface: Interfacial phonon modes and phonon local non-equilibrium analysis, Int. J. Heat Mass Trans., 183, 122090, 10.1016/j.ijheatmasstransfer.2021.122090
Hu, 2011, Large “near junction” thermal resistance reduction in electronics by interface nanoengineering, Int. J. Heat Mass Trans., 10.1016/j.ijheatmasstransfer.2011.08.027
Polanco, 2019, Oak Ridge National Lab. ORNL, Phonon thermal conductance across GaN-AlN interfaces from first principles, Phys. Rev. B, 99, 075202, 10.1103/PhysRevB.99.075202
Lee, 2017, The role of optical phonons in intermediate layer-mediated thermal transport across solid interfaces, Phys. Chem. Chem. Phys., 19, 18407, 10.1039/C7CP02982A
Li, 2020, Interface structure and deformation mechanisms of AlN/GaN multilayers, Ceram. Int., 46, 11556, 10.1016/j.ceramint.2020.01.182
Chen, 2018, Effect of dynamic evolution of misfit dislocation pattern on dislocation nucleation and shear sliding at semi-coherent bimetal interfaces, Acta Mater., 143, 107, 10.1016/j.actamat.2017.10.012
Cho, 2012, Low thermal resistances at GaN–SiC interfaces for HEMT technology, IEEE Electr. Dev. L, 33, 378, 10.1109/LED.2011.2181481
Cho, 2013, Improved thermal interfaces of GaN–diamond composite substrates for HEMT applications, IEEE Trans. Compon. Packag. Manuf. Technol., 3, 79, 10.1109/TCPMT.2012.2223818
Li, 2022, Molecular dynamics simulation of friction, lubrication, and tool wear during nanometric machining, Mach. Tribol. Elsevier, 187, 10.1016/B978-0-12-819889-6.00007-1
Wang, 2017, Investigation into nanoscratching mechanical response of AlCrCuFeNi high-entropy alloys using atomic simulations, Appl. Surf. Sci., 416, 470, 10.1016/j.apsusc.2017.04.009
Zhang, 2022, The deformation mechanism of gallium-faces and nitrogen-faces gallium nitride during nanogrinding, Int. J. Mech. Sci., 214, 106888, 10.1016/j.ijmecsci.2021.106888
Li, 2015, The effect of rough surface on nanoscale high speed grinding by a molecular dynamics simulation, Comp. Mater. Sci., 98, 252, 10.1016/j.commatsci.2014.10.069
Guo, 2020, Temperature effect on mechanical response of c-plane monocrystalline gallium nitride in nanoindentation: a molecular dynamics study, Ceram. Int., 46, 12686, 10.1016/j.ceramint.2020.02.035
Béré, 2006, On the atomic structures, mobility and interactions of extended defects in GaN: dislocations, tilt and twin boundaries, Philos. Mag. (2003. Print), 86, 2159, 10.1080/14786430600640486
Zhou, 2013, Relationship of thermal boundary conductance to structure from an analytical model plus molecular dynamics simulations, Phys. Rev. B, Condens. Matter Mater. Phys., 87, 10.1103/PhysRevB.87.094303
Zhou, 2013, Molecular dynamics studies of material property effects on thermal boundary conductance, Phys. Chem. Chem. Phys.: PCCP, 15, 1178, 10.1039/c3cp51131f
Zhang, 2019, Molecular dynamics simulations of AlN deposition on GaN substrate, Mol. Phys., 117, 1758, 10.1080/00268976.2019.1587025
Qian, 2019, Dependence of tribological behavior of GaN crystal on loading direction: a molecular dynamics study, J. Appl. Phys., 126, 075108, 10.1063/1.5093227
Mayo, 1990, DREIDING: a generic force field for molecular simulations, J. Phys. Chem., 94, 8897, 10.1021/j100389a010
Plimpton, 1995, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., 117, 1, 10.1006/jcph.1995.1039
Stukowski, 2010, Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool, Model. Simul. Mater. Sci., 18, 015012, 10.1088/0965-0393/18/1/015012
Maras, 2016, Global transition path search for dislocation formation in Ge on Si(001), Comput. Phys. Commun., 205, 13, 10.1016/j.cpc.2016.04.001
Qian, 2017, Compression-induced phase transition of GaN bulk from wurtzite phase to five-fold coordination hexagonal phase, AIP Adv., 7, 095312, 10.1063/1.4989620
Lianfeng, 2022, Analysis of the influence of tool radius on mechanical state of monocrystalline silicon during nano-cutting, Mech. Adv. Mater. Struc., 29, 1708, 10.1080/15376494.2020.1837308
Kazan, 2010, Thermal conductance of the interfaces between the III-nitride materials and their substrates: effects of intrinsic material properties and interface conditions, Surf. Sci. Rep., 65, 111, 10.1016/j.surfrep.2010.02.001
Qihong, 2017, Mechanisms of subsurface damage and material removal during high speed grinding processes in Ni/Cu multilayers using a molecular dynamics study, RSC Adv., 7, 42047, 10.1039/C7RA06975H
Dai, 2017, A numerical study of ultraprecision machining of monocrystalline silicon with laser nano-structured diamond tools by atomistic simulation, Appl. Surf. Sci., 393, 405, 10.1016/j.apsusc.2016.10.014
Li, 2018, Subsurface damages beneath fracture pits of reaction-bonded silicon carbide after ultra-precision grinding, Appl. Surf. Sci., 448, 341, 10.1016/j.apsusc.2018.04.038
Tian, 2019, Study on nanomechanical properties of 4H-SiC and 6H-SiC by molecular dynamics simulations, Ceram. Int., 45, 21998, 10.1016/j.ceramint.2019.07.214