Evidence from authigenic uranium for increased productivity of the glacial subantarctic ocean

Paleoceanography - Tập 16 Số 5 - Trang 468-478 - 2001
Zanna Chase, Robert F. Anderson, Martin Q. Fleisher

Tóm tắt

Authigenic uranium is precipitated in reducing sediments and therefore responds both to changes in particulate organic carbon flux to the sediment and to changes in the oxygen concentration of bottom waters. By examining a large number of cores over a wide latitudinal and depth range in the Atlantic sector of the Southern Ocean, we hope to distinguish between a predominantly productivity‐driven authigenic U signal and a circulation or sediment‐focusing signal. We find little to no authigenic U in Holocene sediments throughout the South Atlantic Ocean. Glacial sediments north of ∼40°S lack authigenic U, whereas sediments from the Subantarctic Zone show substantial enrichments in authigenic U relative to the Holocene (up to ∼5.3 ppm). The widespread distribution of glacial U enrichment, even in cores with no glacial‐interglacial change in mass accumulation rate, implies that U deposition was not caused by an increased supply of organic carbon via sediment focusing. Authigenic U and organic carbon in a shallow core (∼1000 m) from the Subantarctic region show the same glacial increase found in the deep cores. Because this site was well ventilated during the Last Glacial Maximum, its record provides further evidence that increased glacial productivity of the Subantarctic region contributed to the high concentrations of authigenic U found in the glacial sections of deep cores.

Từ khóa


Tài liệu tham khảo

10.1016/0016-7037(82)90013-8

10.1016/0012-821X(83)90067-5

10.1016/0012-821X(90)90008-L

10.1016/0967-0645(94)90034-5

10.1016/S0924-7963(98)00060-8

Anderson R. F., 2001, The Southern Ocean's biological pump during the Last Glacial Maximum, Deep‐Sea Res., Part II

10.1029/1999GB001216

10.1098/rsta.1988.0048

10.1038/345405a0

10.1016/S0924-7963(98)00062-1

10.1016/0012-821X(90)90101-3

10.1016/S0012-821X(96)00255-5

Brewer P. G., 1980, Sediment trap experiments in the deep North Atlantic: Isotopic and elemental fluxes, J. Mar. Res., 38, 703

10.1016/0011-7471(72)90040-X

Calvert S. E., 1992, Productivity, Accumulation and Preservation of Organic Matter in Recent and Ancient Sediments

10.1029/91PA02477

10.1016/0012-821X(96)00083-0

Chase Z. Trace elements as regulators (Fe) and recorders (U Pa Th Be) of biological productivity in the ocean Ph.D. thesis Columbia Univ. New York 2001.

CLIMAP Project Members Seasonal reconstruction of the Earth's surface at the Last Glacial Maximum Geol. Soc. of Am. Map and Chart Ser. 36 1981.

10.1016/0016-7037(85)90234-0

Cooke D. W., 1982, Antarctic Geoscience, 1017

10.1029/98PA00339

10.1016/S0016-7037(99)00433-0

10.1038/325318a0

10.1038/373412a0

10.1029/PA003i003p00343

10.1016/0967-0645(96)00011-2

10.1029/PA005i005p00761

10.1029/93PA00784

10.1029/95GB00021

10.1038/40073

Frank M., 1996, Reconstructions of late Quaternary environmental conditions applying the natural radionuclides 230Th, 10Be, 231Pa and 238U: A study of deep‐sea sediments from the eastern sector of the Antarctic Circumpolar Current System, Rep. Polar Res., 186

Froelich P. N., 1991, Biogenic opal and carbonate accumulation rates in the Subantarctic South Atlantic: The late Neogene of meteor rise site 704, Proc. Ocean Drill. Program Sci. Results, 120, 515

Hart T J., 1942, Phytoplankton periodicity in Antarctic surface waters, Discovery Rep., 21, 261

10.1038/35351

10.4319/lo.1998.43.6.1037

10.1016/S0016-7037(99)00406-8

10.1029/93PA01046

10.1016/0016-7037(91)90024-Y

10.1029/JD089iD03p04629

10.1029/1999PA900049

Kumar N. Trace metals and natural radionuclides as tracers of ocean productivity Ph.D. thesis Columbia Univ. New York 1994.

10.1038/362045a0

10.1038/378675a0

10.1038/322701a0

Levitus S., 1994, World Ocean Atlas, Oxygen

10.1130/MEM145-p303

10.1029/93PA02446

10.1016/0198-0149(83)90002-X

10.1038/31197

10.1029/PA005i001p00001

10.1038/345156a0

Martinson D. G., 1987, Age dating and the orbital theory of the Ice Ages: Development of a high‐resolution O‐ to 300,000‐year chronostratigraphy, Quat. Res., 27, 1, 10.1016/0033-5894(87)90046-9

Matsumoto K. The Last Glacial Maximum global overturning circulation: A perspective from foraminiferal oxygen and carbon isotope composition Ph.D. thesis Columbia Univ. New York 2000.

10.1016/S0016-7037(98)00248-8

10.1029/95PA00978

10.4319/lo.1991.36.8.1662

Mix A. C. Late Quaternary paleoceanography of the Atlantic Ocean: Foraminiferal faunal and stable‐isotope évidence doctoral thesis Columbia Univ. New York 1986.

10.1029/1999GB900051

10.1038/351220a0

10.1016/0016-7037(82)90153-3

10.1029/97PA01032

10.1029/97PA01130

10.1029/95PA02089

10.1016/0967-0637(95)00021-W

10.1038/293391a0

Petit J. R., 1999, Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica, Nature, 399, 429, 10.1038/20859

10.1016/0377-8398(79)90018-5

10.1016/0079-6611(89)90001-3

10.1029/1999PA900007

10.1029/95PA00310

10.1029/97PA02508

10.1038/308621a0

10.1098/rstb.1977.0104

10.1038/288260a0

10.1038/31674

Taylor S. R., 1985, The Continental Crust: Its Composition and Evolution

10.1016/0012-821X(90)90061-2

10.1016/0031-0182(88)90120-4

10.1016/0198-0149(90)90034-S

Verardo S. Late Pleistocene sea‐surface temperatures in the Agulahs current region Ph.D. thesis City Univ. ofN. Y. 1995.

10.1016/S0012-821X(97)00068-X

10.1038/379689a0

Zheng Y. Y., 2001, Preservation of particulate nonlithogenic uranium in marine sediments, Geochim. Cosmochim. Acta