Bằng chứng về việc hấp thu GABA vào tế bào lý hóa não chuột trong các nuôi cấy nguyên thuỷ—Sự phụ thuộc vào natri và độc lập với kali

Neurochemical Research - Tập 3 - Trang 313-323 - 1978
Leif Hertz1, P. H. Wu2, Arne Schousboe3
1Department of Anatomy, University of Saskatchewan, Saskatoon, Canada
2Psychiatric Research Division, University of Saskatchewan, Saskatoon, Canada
3Department of Biochemistry A, Panum Institute, University of Copenhagen, Copenhagen N, Denmark

Tóm tắt

Nồng độ GABA đã được đo trong các tế bào thần kinh đệm (astrocyte) bình thường nuôi cấy (từ vỏ não của chuột con) cùng với tác động của GABA không phóng xạ đến sự thoát ra của GABA đánh dấu từ các tế bào đã được tải trước với [14C]GABA. Việc tăng nồng độ GABA bên ngoài từ 0 đến 25 μM đã kích thích sự gia tăng nồng độ GABA trong các tế bào lên mức khoảng 50 lần so với môi trường nuôi cấy. Cả 200 và 2000 μM GABA không phóng xạ đều không có tác động đến tốc độ giải phóng phóng xạ từ các tế bào đã được tải với [14C]GABA. Cả tỷ lệ mô/môi trường cao và việc thiếu một sự gia tăng giải phóng phóng xạ do GABA cho thấy rằng việc hấp thu GABA cao có ái lực được quan sát trước đó trong các tế bào thần kinh đệm nuôi cấy đại diện cho việc hấp thu thuần túy và không phải là sự trao đổi nội sinh với GABA nội sinh. Việc hấp thu này phụ thuộc vào natri nhưng không bị ảnh hưởng trong môi trường không có kali; sự tương quan định lượng giữa vận tải GABA và vận tải natri khác với những gì đã được báo cáo cho synaptosome.

Từ khóa

#GABA #tế bào lý hóa não #hấp thu natri #độc lập kali #synaptosome

Tài liệu tham khảo

Henn, F. A. andHamberger, A. 1971 Glial cell function: Uptake of transmitter substances. Proc. Natl. Acad. Sci. U.S.A. 68, 2686–2690. Bowery, N. G., andBrown, D. A. 1972 γ-Aminobutyric acid uptake by sympathetic ganglia. Nature (London), New Biol. 238, 89–91. Young, J. A. C., Brown, D. A., Kelly, J. S., andSchon, F. 1973 Autoradiographic localization of sites of3H-γ-aminobutyric acid accumulation in peripheral autonomic ganglia. Brain Res. 63, 479–486. Schon, F., andKelly, J. S. 1974 The characterisation of3H-GABA uptake into the satellite glial cells of rat sensory ganglia. Brain Res. 66, 289–300. Roberts, P. J. 1976 Gamma-aminobutyric acid homoexchange in sensory ganglia. Brain Res. 113, 206–209. Neal, M. J., andIversen, L. L. 1972 Autoradiographic localization of3H-GABA in rat retina. Nature (London), New Biol. 235, 217–218. Marshall, J., andVoaden, M. 1974 An investigation of the cells incorporating [3H]GABA and [3H]glycine in the isolated retina of the rat. Exp. Eye Res. 18, 367–370. Hutchison, H. T., Werrbach, K., Vance, C., andHaber, B. 1974 Uptake of neurotransmitters by clonal lines of astrocytoma and neuroblastoma in culture. I. Transport of γ-aminobutyric acid. Brain Res. 66, 265–274. Schrier, B. K., andThompson, E. J. 1974 On the role of glial cells in the mammalian nervous system. Uptake, excretion and metabolism of putative neurotransmitters by cultured glial tumor cells. J. Biol. Chem. 249, 1769–1780. Schubert, D. 1975 The uptake of GABA by clonal nerve and glia. Brain Res. 84, 87–98. Hösli, E., Ljungdahl, Å., Hökfelt, T., andHösli, L. 1972 Spinal cord tissue cultures — A model for autoradiographic studies on uptake of putative neurotransmitters such as glycine and GABA. Experientia 28, 1342–1344. Lasher, R. S. 1975 Uptake of GABA by neuronal and non-neuronal cells in dispersed cell cultures of postnatal rat cerebellum. J. Neurobiol. 6, 597–608. Schousboe, A., Hertz, L., andSvenneby, G. 1977 Uptake and metabolism of GABA in astrocytes cultured from dissociated mouse brain hemispheres. Neurochem. Res. 2, 217–229. Storm-Mathisen, J. 1976 Distribution of the components of the GABA system in neuronal tissue: Cerebellum and hippocampus—Effects of axotomy. Pages 149–168in GABA in Nervous System Function, E. Roberts, T. N. Chase, and D. B. Tower, eds. Raven Press, New York. Schousboe, A. 1977 Differences between astrocytes in primary culture and glial cell lines in uptake and metabolism of putative amino acid transmitter. Pages 441–446in Cell, Tissue and Organ Cultures in Neurobiology, S. Fedoroff, and L. Hertz, eds. Academic Press, New York. Schousboe, A. 1978 Glutamate, GABA and taurine in cultured, normal glia cells.In Dynamic Properties of Glia Cells, E. Schoffeniels, G. Franck, L. Hertz, and D. B. Tower, eds. Pergamon Press, London (in press). Iversen, L. L. 1971 Role of transmitter uptake mechanisms in synaptic neurotransmission. Br. J. Pharmacol. 41, 571–591 Bennett, J. P., Jr., Logan, W. J., andSnyder, S. H. 1972 Amino acid neurotransmitter candidates: Sodium-dependent high-affinity uptake by unique synaptosomal fractions. Science 178, 997–999. Martin, D. L. 1976 Carrier-mediated transport and removal of GABA from synaptic regions. Pages 347–386in GABA in Nervous System Function, E. Roberts, T. N. Chase, and D. B. Tower, eds. Raven Press, New York. Levi, G., andRaiteri, M. 1974 Exchange of neurotransmitter amino acid at nerve endings can simulate high affinity uptake. Nature (London) 250, 735–737. Raiteri, M., Federico, R., Coletti, A., andLevi, G. 1975 Release and exchange studies relating to the synaptosomal uptake of GABA. J. Neurochem. 24, 1243–1250. Sellström, A., Venema, R., andHenn, F. 1976 Functional assessment of GABA uptake or exchange by synaptosomal fractions. Nature (London) 264, 652–653. Sellström, A., andHamberger, A. 1976 Gamma-aminobutyric acid release from neurons and glia. Acta Physiol. Scand. 98, 94–102. Sellström, A., andHenn, F. 1976 Role of exchange in ‘high-affinity’ amino acid neurotransmitter uptake. Trans. Am. Soc. Neurochem. 7, 233. Lake, N., andVoaden, M. J. 1976 Exchange versus net uptake of exogenouslyapplied γ-aminobutyric acid in retina. J. Neurochem. 27, 1571–1573. Schrier, B. K. 1977 Transmitters, putative transmitters and transmitter-related enzymes studied in cultured cell systems. Pages 423–439in Cell, Tissue and Organ Cultures in Neurobiology, S. Fedoroff and L. Hertz, eds. Academic Press, New York. Booher, J., andSensenbrenner, M. 1972 Growth and cultivation of dissociated neurons and glial cells from embryonic chick, rat and human brain in flask cultures. Neurobiology 2, 97–105. Hertz, L., Schousboe, A., Boechler, N., Mukerji, S. andFedoroff, S. 1978 Kinetic characteristics of the glutamate uptake into normal astrocytes in cultures. Neurochem. Res. 3, 1–14. Eagle, H. 1959. Amino acid metabolism in mammalian cell cultures. Science 130, 432–437. Bullaro, J. C., andBrookman, D. H. 1976 Comparison of skeletal muscle monolayer cultures initiated with cells dissociated by the vortex and trypsin methods. In Vitro 12, 564–570. Hertz, L. 1977 Biochemistry of glial cells. Pages 39–71in Cell, Tissue and Organ Cultures in Neurobiology S. Fedoroff and L. Hertz, eds., Academic Press, New York. Winegrad, S., andShanes, A. M. 1962 Calcium flux and contractility in guinea pig atria. J. Gen. Physiol. 45, 371–394. Hertz, L. 1968 Potassium effects on ion transport in brain slices. J. Neurochem. 15, 1–16. Seiler, N. 1970 Use of the dansyl reaction in biochemical analysis. Pages 259–337in Method of Biochemical Analysis, Vol. 18, D. Glick ed., John Wiley & Son, London. Lowry, O. H., Rosebrough, N. J., Farr, A. L., andRandall, R. J. 1951 Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265–275. Schousboe, A., Fosmark, H., andHertz, L. 1975 High content of glutamate and of ATP in astrocytes cultured from rat brain hemispheres: Effect of serum withdrawal and of cyclic AMP. J. Neurochem. 25, 909–911. Rose, S. P. 1970 The compartmentation of glutamate and its metabolites in fractions of neuron cell bodies and neuropil; Studied by intraventricular injection of U-14C-glutamate. J. Neurochem. 17, 809–816. Nagata, Y., Mikoshiba, K., andTsukada, Y. 1974 Neuronal cell body enriched and glial cell enriched fractions from young and adult rat brains: Preparation and morphological and biochemical properties. J. Neurochem. 22, 493–503. Sellström, A., Sjöberg, L. B., andHamberger, A. 1975 Neuronal and glial systems for γ-aminobutyric acid metabolism. J. Neurochem. 25, 393–398. Beart, P. M., Kelly, J. S., andSchon, F. 1974 Gamma-aminobutyric acid in the rat peripheral nervous system, pineal and posterior pituitary. Biochem. Soc. Trans., 2, 266–268. Wilson, S. H., Schrier, B. K., Farber, J. L., Thompson, E. J., Rosenberg, R. N. Blume, A. J., andNirenberg, M. W. 1972 Markers for gene expression in cultured cells from the nervous system. J. Biol. Chem. 247, 3159–3169. Schousboe, A., Svenneby, G., andHertz, L. 1977 Uptake and metabolism of glutamate in astrocytes cultured from dissociated mouse brain hemispheres. J. Neurochem. 29, 999–1005. Schousboe, A., Fosmark, H., andSvenneby, G. 1976 Taurine uptake in astrocytes cultured from dissociated mouse brain hemispheres. Brain Res. 116, 158–164. Sellström, Å., andHamberger, A. 1975 Neuronal and glial systems for γ-aminobutyric acid transport. J. Neurochem. 24, 847–852. Hill, A. V. 1913. The combinations of haemoglobin with oxygen and with carbon monoxide. Biochem. J. 7, 471–480. Atkinson, D. E. 1966 Regulation of enzyme activity. Annu. Rev. Biochem. 35, 85–124. Koshland, D. E., Jr. 1970 The molecular basis for enzyme regulation. Pages 341–396in The Enzymes, Vol. 1 P. D. Boyer, ed. Academic Press, New York. Whitehead, E. 1970 The regulation of enzyme activity and allosteric transition. Progr. Biophys. Mol. Biol. 21, 321–397.