Evidence for immunomodulation and apoptotic processes induced by cationic polystyrene nanoparticles in the hemocytes of the marine bivalve Mytilus
Tài liệu tham khảo
Andrady, 2011, Microplastics in the marine environment, Mar. Pollut. Bull., 62, 1596, 10.1016/j.marpolbul.2011.05.030
ASTM, 2004, E 724
Bexiga, 2011, Cationic nanoparticles induce caspase 3-, 7- and 9-mediated cytotoxicity in a human astrocytoma cell line, Nanotoxicology, 5, 557, 10.3109/17435390.2010.539713
Browne, 2008, Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.), Environ. Sci. Technol., 42, 5026, 10.1021/es800249a
Canesi, 2013, The invertebrate immune system as a model for investigating the environmental impact of nanoparticles, 91
Canesi, 2002, Bacteria – hemocyte interactions and phagocytosis in marine bivalves, Microsc. Res. Tech., 57, 469, 10.1002/jemt.10100
Canesi, 2008, Immunotoxicity of carbon black nanoparticles to blue mussel hemocytes, Environ. Int., 34, 1114, 10.1016/j.envint.2008.04.002
Canesi, 2010, In vitro effects of suspensions of selected nanoparticles (C60 fullerene, TiO2, SiO2) on Mytilus hemocytes, Aquat. Toxicol., 96, 151, 10.1016/j.aquatox.2009.10.017
Canesi, 2012, Bivalve molluscs as a unique target group for nanoparticle toxicity, Mar. Environ. Res., 76, 16, 10.1016/j.marenvres.2011.06.005
Canesi, 2015, Interactive effects of nanoparticles with other contaminants in aquatic organisms: friend or foe?, Mar. Environ. Res., 10.1016/j.marenvres.2015.03.010
Casado, 2013, Ecotoxicological assessment of silica and polystyrene nanoparticles assessed by a multitrophic test battery, Environ. Int., 51, 97, 10.1016/j.envint.2012.11.001
Ciacci, 2012, Immunomodulation by different types of n-oxides in the hemocytes of the marine bivalve Mytilus galloprovincialis, PLoS One, 7, e36937, 10.1371/journal.pone.0036937
Cole, 2011, Microplastics as contaminants in the marine environment: a review, Mar. Pollut. Bull., 62, 2588, 10.1016/j.marpolbul.2011.09.025
Corsi, 2014, Common strategies and technologies for the ecosafety assessment and design of nanomaterials entering the marine environment, ACS Nano, 8, 9694, 10.1021/nn504684k
Crane, 2008, Ecotoxicity test methods and environmental hazard assessment for engineered nanoparticles, Ecotoxicology, 17, 421, 10.1007/s10646-008-0215-z
Della Torre, 2014, Accumulation and embryotoxicity of polystyrene nanoparticles at early stage of development of sea urchin embryos Paracentrotus lividus, Environ. Sci. Technol., 48, 12302, 10.1021/es502569w
Fleischer, 2014, Nanoparticle-cell interactions: molecular structure of the protein corona and cellular outcomes, Acc. Chem. Res., 47, 2651, 10.1021/ar500190q
Hidalgo-Ruz, 2012, Microplastics in the marine environment: a review of the methods used for identification and quantification, Environ. Sci. Technol., 46, 3060, 10.1021/es2031505
Jovanovic, 2012, Immunotoxicology of non-functionalized engineered nanoparticles in aquatic organisms with special emphasis on fish-review of current knowledge, gap identification, and call for further research, Aquat. Toxicol., 15, 118
Liu, 2011, Intracellular dynamics of cationic and anionic polystyrene nanoparticles without direct interaction with mitotic spindle and chromosomes, Biomaterials, 32, 8291, 10.1016/j.biomaterials.2011.07.037
Lundqvist, 2008, Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts, Proc.Natl. Acad. Sci. U. S. A., 105, 14265, 10.1073/pnas.0805135105
Lunov, 2011, Amino-functionalized polystyrene nanoparticles activate the NLRP3 inflammasome in human macrophages, ACS Nano, 5, 9648, 10.1021/nn203596e
Matranga, 2012, Toxic effects of engineered nanoparticles in the marine environment: model organisms and molecular approaches, Mar. Environ. Res., 76, 32, 10.1016/j.marenvres.2012.01.006
Moore, 2006, Do nanoparticles present ecotoxicological risks for the health of the aquatic environment?, Environ. Int., 32, 967, 10.1016/j.envint.2006.06.014
Nel, 2009, Understanding biophysicochemical interactions at the nano-bio interface, Nat. Mater., 8, 543, 10.1038/nmat2442
Oliveri, 2014, Biochemical and proteomic characterisation of haemolymph serum reveals the origin of the alkali-labile phosphate (ALP) in mussel (Mytilus galloprovincialis), Comp. Biochem. Physiol. Part D. Genomics Proteomics, 11, 29, 10.1016/j.cbd.2014.07.003
PlasticsEurope, 2013
Stern, 2012, Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity, Part. Fibre Toxicol., 9, 20, 10.1186/1743-8977-9-20
Sun, 2014, Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials, Environ. Pollut., 185, 69, 10.1016/j.envpol.2013.10.004
Van Cauwenberghe, 2014, Microplastics in bivalves cultured for human consumption, Environ. Pollut., 193, 65, 10.1016/j.envpol.2014.06.010
Wang, 2013, Time resolved study of cell death mechanisms induced by amine-modified polystyrene nanoparticles, Nanoscale, 5, 10868, 10.1039/c3nr03249c
Ward, 2009, Marine aggregates facilitate ingestion of nanoparticles by suspension-feeding bivalves, Mar. Environ. Res., 68, 137, 10.1016/j.marenvres.2009.05.002
Wegner, 2012, Effects of nanopolystyrene on the feeding behavior of the blue mussel (Mytilus edulis L.), Environ. Toxicol. Chem., 31, 2490, 10.1002/etc.1984
Wright, 2013, The physical impacts of microplastics on marine organisms: a review, Environ. Pollut., 178, 483, 10.1016/j.envpol.2013.02.031