Event-Triggered Sliding Mode Control Using the Interval Type-2 Fuzzy Logic for Steer-by-Wire Systems with Actuator Fault
Tóm tắt
Từ khóa
Tài liệu tham khảo
Kirli, A., Chen, Y., Okwudire, C., Ulsoy, G.: Torque-vectoring-based backup steering strategy for steer-by-wire autonomous vehicles with vehicle stability control. IEEE Trans. Veh. Technol 68(8), 7319–7328 (2019)
Vaio, M.D., Falcone, P., Hult, R., Petrillo, A., Santini, S.: Design and experimental validation of a distributed interaction protocol for connected autonomous vehicles at a road intersection. IEEE Trans. Veh. Technol 68(10), 9451–9465 (2019)
Peng, H., Wang, W., An, Q., Xiang, C., Li, L.: Path tracking and direct yaw moment coordinated control based on robust mpc with the finite time horizon for autonomous independent-drive vehicles. IEEE Trans. Veh. Technol 69(6), 6053–6066 (2020)
Zhang, L., Wang, Z., Ding, X., Li, S., Wang, Z.: Fault-tolerant control for intelligent electrified vehicles against front wheel steering angle sensor faults during trajectory tracking. IEEE Access 9, 65174–65186 (2021). https://doi.org/10.1109/ACCESS.2021.3075325
Marino, R., Scalzi, S., Netto, M.: Nested pid steering control for lane keeping in autonomous vehicles. Control Eng. Pract. 19(12), 1459–1467 (2011)
Yih, P., Gerdes, J.: Modification of vehicle handling characteristics via steer-by-wire. IEEE Trans. Control Syst. Technol. 13(6), 965–976 (2005)
Falcone, P., Borrelli, F., Asgari, J., Tseng, H.E., Hrovat, D.: Predictive active steering control for autonomous vehicle systems. IEEE Trans. Control Syst. Technol. 15(3), 566–580 (2007)
Yamaguchi, Y., Murakami, T.: Adaptive control for virtual steering characteristics on electric vehicle using steer-by-wire system. IEEE Trans. Ind. Electron. 56(5), 1585–1594 (2009)
Wang, H., Kong, H., Man, Z., Tuan, D.M., Cao, Z., Shen, W.: Sliding mode control for steer-by-wire systems with ac motors in road vehicles. IEEE Trans. Ind. Electron. 61(3), 1596–1611 (2014)
Wu, X.D., Zhang, M.M., Xu, M.: Active tracking control for steer-by-wire system with disturbance observer. IEEE Trans. Veh. Technol. 68(6), 5483–5493 (2019)
Do, M.T., Man, Z., Zhang, C., Wang, H., Tay, F.S.: Robust sliding mode-based learning control for steer-by-wire systems in modern vehicles. IEEE Trans. Veh. Technol. 63(2), 580–590 (2014)
Sun, Z., Zheng, J., Man, Z., Wang, H.: Robust control of a vehicle steer-by-wire system using adaptive sliding mode. IEEE Trans. Ind. Electron. 63(4), 2251–2262 (2016)
Wang, H., Man, Z., Kong, H., Zhao, Y., Yu, M., Cao, Z., Zheng, J., Do, M.: Design and implementation of adaptive terminal sliding mode control on a steer-by-wire equipped road vehicle. IEEE Trans. Ind. Electron. 63(9), 5774–5785 (2016)
Sun, Z., Zheng, J.C., Man, Z.H., Fu, M.Y., Lu, R.Q.: Nested adaptive super-twisting sliding mode control design for a vehicle steer-by-wire system. Mech. Syst. Signal Process. 122, 658–672 (2019)
Huang, C., Naghdy, F., Du, H.: Delta operator-based fault estimation and fault-tolerant model predictive control for steer-by-wire systems. IEEE Trans. Control Syst. Technol. 26(5), 1810–1817 (2018)
Huang, C., Naghdy, F., Du, H.: Fault tolerant sliding mode predictive control for uncertain steer-by-wire system. IEEE Trans. Cybern 49(1), 1810–1817 (2019)
Edwards, C., Spurgeon, S.K.: Sliding mode control: theory and applications. Taylor & Francis, UK (1998)
Hamayun, M.T., Edwards, C., Alwi, H.: Augmentation scheme for fault-tolerant control using integral sliding modes. IEEE Trans. Control Syst. Technol. 22(1), 307–313 (2014)
Utkin, V.I., Poznyak, A.S.: Adaptive sliding mode control with application to super-twist algorithm: Equivalent control method. Automatica 49(1), 39–47 (2013)
Wu, H.M., Karkoub, M.: Hierarchical fuzzy sliding-mode adaptive control for the trajectory tracking of differential-driven mobile robots. Int. J. fuzzy syst. 21(1), 33–49 (2019)
Ding, X., Wang, Z., Zhang, L.: Hybrid control-based acceleration slip regulation for four-wheel-independent-actuated electric vehicles. IEEE Trans. Transp. Electrification PP (2020). https://doi.org/10.1109/TTE.2020.3048405
Zhang, L., Wang, Y., Wang, Z.: Robust lateral motion control for in-wheel-motor-drive electric vehicles with network induced delays. IEEE Trans. Veh. Technol. 68(11), 10585–10593 (2019)
Hess, R.A., Wells, S.R.: Sliding mode control applied to reconfigurable flight control design. J. Guid., Control Dynam 26, 452–462 (2003)
Ma, X., Wong, P.K., Zhao, J., Xie, Z.: Cornering stability control for vehicles with active front steering system using t-s fuzzy based sliding mode control strategy. Mech. Syst. Signal Process. 125, 347–364 (2019)
Burton, J.A., Zinober, A.S.I.: Continuous approximation of variable structure control. Int. J. Syst. Sci. 17, 875–885 (1986)
Huang, Y.J., Kuo, T.C., Chang, S.H.: Adaptive sliding-mode control for nonlinear systems with uncertain parameters. IEEE Trans. Syst. Man Cybern. B 38(2), 534–539 (2008)
Levant, A.: Sliding order and sliding accuracy in sliding mode control. Int. J. Control 58(6), 1247–1263 (1993)
Laghrouche, S., Plestan, F., Glumineau, A.: Higher order sliding mode control based on integral sliding mode. Automatica 43(3), 531–537 (2007)
Edwards, C., Shtessel, Y.: Adaptive continuous higher order sliding mode control. Automatica 65(1), 183–190 (2016)
Tabuada, P.: Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans. Automa. Control 52(9), 1680–1685 (2007)
Henningsson, T., Johannesson, E., Cervin, A.: Sporadic event-based control of first-order linear stochastic systems. Automatica 44(11), 2890–2895 (2008)
Xu, C., Wu, B., Cao, X., Zhang, Y.: Distributed adaptive event-triggered control for attitude synchronization of multiple spacecraft. Nonlinear Dyn. 95(4), 2625–2638 (2019)
Li, H., Chen, G., Xiao, L.: Event-triggered sampling scheme for pinning control in multi-agent networks with general nonlinear dynamics. Neural Comput. Appl. 27(8), 2587–2599 (2016)
Zhang, J., Zhang, H., Lu, Y., Sun, S.: Cooperative output regulation of heterogeneous linear multi-agent systems with edge-event triggered adaptive control under time-varying topologies. Neural Comput. Appl. 32, 15573–15584 (2020)
Luan, Z., Zhang, J., Zhao, W., Wang, C.: Trajectory tracking control of autonomous vehicle with random network delay. IEEE Trans. Veh. Technol 69(8), 8140–8150 (2020)
Tuohy, S., Glavin, M., Hughes, C., Jones, E., Trivedi, M., Kilmartin, L.: Intra-vehicle networks: A review. IEEE Trans. Intell. Transp. Syst. 16(2), 534–545 (2015)
Behera, A.K., Bandyopadhyay, B.: New methodologies for adaptive sliding mode control. Int. J. Control 88(9), 1916–1931 (2016)
Liu, Y., Jiang, B., Lu, J., Cao, J., Lu, G.: Event-triggered sliding mode control for attitude stabilization of a rigid spacecraft. IEEE Trans. Syst., Man, Cybern., Syst. (2020, https://doi.org/10.1109/TSMC.2018.2867061)
Kumari, B., Behera, A.K., Bandyopadhyay, B.: Event-triggered sliding mode-based tracking control for uncertain euler-lagrange systems. IET Control Theory Appl. 12(9), 1228–1235 (2018)
Xu, X., Su, P., Wang, F., Chen, L., Atindana, V.A.: Coordinated control of dual-motor using the interval type-2 fuzzy logic in autonomous steering system of agv. Int. J. fuzzy syst. (1) (2020)
Nair, R.R., Behera, L., Kumar, S.: Multirobot systems with disturbances. IEEE Trans. Control Syst. Technol. 27(1), 39–47 (2019)
Haggag, S., Alstrom, D., Cetinkunt, S., Egelja, A.: Modeling, control, and validation of an electro-hydraulic steer-by-wire system for articulated vehicle applications. IEEE/ASME Trans. Mechatronics 10(6), 688–692 (2005)
Zhu, W., Jiang, Z.: Event-based leader-following consensus of multi-agent systems with input time delay. IEEE Trans. Autom. Control 60(5), 1362–1367 (2015)
Sun, Z., Zheng, J., Man, Z., Wang, H.: Adaptive fast non-singular terminal sliding mode control for a vehicle steer-by-wire system. IET Control Theory Appl. 11(8), 1245–1254 (2017)
Lin, F., Hung, Y., Ruan, K.: An intelligent second-order sliding-mode control for an electric power steering system using a wavelet fuzzy neural network. IEEE Trans. Fuzzy Syst. 22(6), 1598–1611 (2014)
Tao, G., Joshi, S.M., Ma, X.L.: Adaptive state feedback and tracking control of systems with actuator failures. IEEE Trans. Autom. Control 46(1), 78–95 (2000)
Wang, W., Wen, C.: Adaptive actuator failure compensation control of uncertain nonlinear systems with guaranteed transient performance. Automatica 46(12), 2082–2091 (2010)
Mao, Z., Yan, X.G., Jiang, B., Chen, M.: Adaptive fault-tolerant sliding-mode control for high-speed trains with actuator faults and uncertainties. IEEE Trans. Intell. Transp. Syst 21(6), 2449–2460 (2020)
H. Ma, H., Li, H.Y., Liang, H.J., Dong, G.W.: Adaptive fuzzy event-triggered control for stochastic nonlinear systems with full state constraints and actuator faults. IEEE Trans. Fuzzy Syst. 27(11), 2242–2254 (2019)
Lai, G., Liu, Z., Chen, C.L.P., Zhang, Y., Chen, X.: Adaptive compensation for infinite number of time-varying actuator failures in fuzzy tracking control of uncertain nonlinear systems. IEEE Trans. Fuzzy Syst. 26(2), 474–486 (2018)
Wang, B., Zhang, Y.: An adaptive fault-tolerant sliding mode control allocation scheme for multirotor helicopter subject to simultaneous actuator faults. IEEE Trans. Ind. Electron. 65(5), 4227–4236 (2018)
Jing, Y., Yang, G.: Fuzzy adaptive fault-tolerant control for uncertain nonlinear systems with unknown dead-zone and unmodeled dynamics. IEEE Trans. Fuzzy Syst. 27(12), 2265–2278 (2019)
Mendel, J.M.: General type-2 fuzzy logic systems made simple: A tutorial. IEEE Trans. Fuzzy Syst. 22(5), 1162–1182 (2014)
Wang, L.: A new look at type-2 fuzzy sets and type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 25(3), 963–706 (2017)
Mendel, J.M., Hagras, H., Tan, W.W., Melek, W.W., Ying, H.: Introduction to Type-2 Fuzzy Logic Control: Theory and Applications. Wiley (2014)
Mendel, J.M.: On km algorithms for solving type-2 fuzzy set problems. IEEE Trans. Fuzzy Syst. 21(3), 426–446 (2013)
Manceur, M., Essounbouli, N., Hamzaoui, A.: Second-order sliding fuzzy interval type-2 control for an uncertain system with real application. IEEE Trans. Fuzzy Syst. 20(2), 262–275 (2012)
Wu, D.: On the fundamental differences between interval type-2 and type-1 fuzzy logic controllers. IEEE Trans. Fuzzy Syst. 20(5), 832–848 (2012)
Mendel, J.M., John, R.I.B.: Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 10(2), 117–127 (2002)
Lin, C.M., La, V.H., Le, T.L.: Dc-dc converters design using a type-2 wavelet fuzzy cerebellar model articulation controller. Neural Comput. Appl. 32, 2217–2229 (2020)
Eshghi, A., Mousavi, S.M., Mohagheghi, V.: A new interval type-2 fuzzy approach for analyzing and monitoring the performance of megaprojects based on earned value analysis (with a case study). Neural Comput. Appl. 31, 5109–5133 (2019)
Luo, C., Tan, C., Wang, X., Zheng, Y.: An evolving recurrent interval type-2 intuitionistic fuzzy neural network for online learning and time series prediction. Appl. Soft Comput. 78 (2019)
Cao, L., Li, H., Wang, N., Zhou, Q.: Observer-based event-triggered adaptive decentralized fuzzy control for nonlinear large-scale systems. IEEE Trans. Fuzzy Syst. 27(6), 1201–1214 (2019)
Zhu, Z., Xia, Y., Fu, M.: Attitude stabilization of rigid spacecraft with finite-time convergence. Int. J. Robust Nonlin. Control 21(6), 686–702 (2011)
Ying, H.: Interval type-2 takagi-sugeno fuzzy systems with linear rule consequent are universal approximators. In: NAFIPS 2009 - 2009 Annual Meeting of the North American Fuzzy Information Processing Society (2009)