Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Đánh giá các dẫn xuất quinoline gắn xanthene như những ứng viên tiềm năng chống lại các mục tiêu thuốc chống sốt rét
Tóm tắt
Một loạt các dẫn xuất quinoline gắn xanthene 6a–n đã được tổng hợp thành công với tính chọn lọc vùng và được đặc trưng hóa bằng IR, 1H NMR, 13C NMR, và dữ liệu phổ khối. Phân tử docking đã được thực hiện để tìm hiểu hiệu quả liên kết của tất cả các hợp chất được tổng hợp mới này đối với mười ba mục tiêu thuốc chống sốt rét. Mô phỏng động lực học phân tử đã được thực hiện để dự đoán sự ổn định của phức hợp liên kết ligand trong môi trường dung môi. Việc docking mù và định hướng tại chỗ với các hợp chất 6a–n đối với 13 mục tiêu thuốc đã cho thấy hầu hết các ligand có ái lực liên kết tốt với các mục tiêu. Phân tích dựa trên năng lượng liên kết, tính chất liên kết của các ligand, các tương tác giữa phân tử, và pharmacophore, chúng tôi xác định chỉ một trong các phức hợp ligand–thụ thể cho kết quả tốt hơn. Mô phỏng động lực học phân tử của phức hợp thụ thể–ligand được chọn cho thấy rằng hợp chất tổng hợp có ái lực liên kết tốt hơn với thụ thể so với phức hợp ligand nội sinh. Phân tích thêm về ligand tổng hợp trong phòng thí nghiệm có thể mang lại những kết quả hứa hẹn trong việc tìm kiếm các thuốc chống sốt rét tiềm năng.
Từ khóa
#quinoine #xanthene #thuốc chống sốt rét #docking phân tử #mô phỏng động lực học phân tửTài liệu tham khảo
Michael JP (2005) Quinoline, quinazoline and acridone alkaloids. Nat Prod Rep 22(5):627–646. https://doi.org/10.1039/B413750G
Michael JP (2007) Quinoline, quinazoline and acridone alkaloids. Nat Prod Rep 24(1):223–246. https://doi.org/10.1039/B509528J
Michael JP (2008) Quinoline, quinazoline and acridone alkaloids. Nat Prod Rep 25(1):166–187. https://doi.org/10.1039/B612168N
Padwa A, Brodney MA, Liu B, Satake K, Wu T (1999) A cycloaddition approach toward the synthesis of substituted indolines and tetrahydroquinolines. J Org Chem 64(10):3595–3607. https://doi.org/10.1021/jo982453g
Atkins RJ, Breen GF, Crawford LP, GrinterTJ HMA, Hayes JF, Moores CJ, Saunders RN, Share AC, Walsgrove TC, Wicks C (1997) Synthetic routes to quinoline derivatives: novel syntheses of 3-butyryl-8-methoxy-4-[(2-methylphenyl)amino] quinoline and 3-butyryl-8-(2-hydroxyethoxy)-4-[(2 methylphenyl) amino]quinoline. Org Process Res Dev 1(3):185–197. https://doi.org/10.1021/op9700035
Xia L, Idhayadhulla A, Lee YR, Kim SH, Wee YJ (2014) Microwave-assisted synthesis of diverse pyrrolo[3,4-c]quinoline-1,3-diones and their antibacterial activities. ACS Comb Sci 16(7):333–341. https://doi.org/10.1021/co500002s
Lilienkampf A, Mao J, Wan B, Wang Y, Franzblau SG, Kozikowski AP (2009) Structure−activity relationships for a series of quinoline-based compounds active against replicating andnonreplicating mycobacterium tuberculosis. J Med Chem 52(7):2109–2118. https://doi.org/10.1021/jm900003c
Detsi A, Bouloumbasi D, Prousis KC, Koufaki M, Athanasellis G, Melagraki G, Afantitis A, Igglessi-Markopoulou O, Kontogiorgis C, Hadjipavlou-Litina DJ (2007) Design and synthesis of novel quinolinone-3-aminoamides and their α-lipoic acid adducts as antioxidant and anti-inflammatory agents. J Med Chem 50(10):2450–2458. https://doi.org/10.1021/jm061173n
Insuasty B, Montoya A, Becerra D, Quiroga J, Abonia R, Robledo S, Velez IV, Upegui Y, Nogueras M, Cobo J (2013) Synthesis of novel analogs of 2-pyrazoline obtained from [(7-chloroquinolin-4-yl)amino]chalcones and hydrazine as potential antitumor and antimalarial agents. Eur J Med Chem 67:252–262. https://doi.org/10.1016/j.ejmech.2013.06.049
Campbell SF, Hardstone JD, Palmer MJ (1988) 2,4-Diamino-6,7-dimethoxyquinoline derivatives as .alpha.1-adrenoceptor antagonists and antihypertensive agents. J Med Chem 31(5):1031–1035. https://doi.org/10.1021/jm00400a025
Fotie J, Kaiser M, Delfín DA, Manley J, Reid CS, Paris JM, Wenzler T, Maes L, Mahasenan KV, Li C, Werbovetz KA (2010) Antitrypanosomal activity of 1,2-dihydroquinolin-6-ols and their ester derivatives. J Med Chem 53(3):966–982. https://doi.org/10.1021/jm900723w
Hoekstra WJ, Patel HS, Liang X, Blanc JBE, Heyer DO, Willson TM, Lannone MA, Kadwell SH, Miller LA, Pearce KH, Simmons CA, Shearin J (2005) Discovery of novel quinoline-based estrogen receptor ligands using peptide interaction profiling. J Med Chem 48(6):2243–2247. https://doi.org/10.1021/jm040154f
Goda FE, Abdel-Aziz AA-M, Ghoneim HA (2005) Synthesis and biological evaluation of novel 6-nitro-5-substituted aminoquinolines as local anesthetic and anti-arrhythmic agents: molecular modeling study. Bioorgan Med Chem 13(9):3175–3183. https://doi.org/10.1016/j.bmc.2005.02.050
Zhi L, Tegley CM, Kallel EA, Marschke KB, Mais DE, Gottardis MM, Jones TK (1998) 5-Aryl-1,2-dihydrochromeno[3,4-f]quinolines: a novel class of nonsteroidal human progesterone receptor agonists. J Med Chem 41(3):291–302. https://doi.org/10.1021/jm9705768
Hancock JM, Jenekhe SA (2008) Unusual protonation-induced continuous tunability of optical properties and electroluminescence of a π-conjugated heterocyclic oligomer. Macromolecules 41(19):6864–6867. https://doi.org/10.1021/ma8016037
Tao YT, Balasubramaniam E, Danel A, Jarosz B, Tomasik P (2001) Organic light- emitting diodes based on variously substituted pyrazoloquinolines as emitting material. Chem Mater 13(4):1207–1212. https://doi.org/10.1021/cm000622j
Sinha M, Dola VR, Agarwal P, Srivastava K, Haq W, Puri SK, Katti SB (2014) Antiplasmodial activity of new 4-aminoquinoline derivatives against chloroquine resistant strain. Bioorg Med Chem 22(14):3573–3586. https://doi.org/10.1016/j.bmc
Pérez BC, Teixeira C, Albuquerque IS, Gut J, Rosenthal PJ, Gomes JRB, Prudenico M, Gomes P (2013) N-cinnamoylatedchloroquine analogues as dual stage antimalarial leads. J Med Chem 56(2):556–567. https://doi.org/10.1021/jm301654b
Zhou X, Li P, Shi Z, Tang X, Chen C, Liu W (2012) A highly selective fluorescent sensor for distinguishing cadmium from zinc ions based on a quinoline platform. Inorg Chem 51(17):9226–9231. https://doi.org/10.1021/ic300661c
Joshi P, Chakraborty S, Dey S, Shanker V, Ansari ZA, Singh SP, Chakrabarti P (2011) Binding of chloroquine-conjugated gold nanoparticles with bovine serum albumin. J Colloid Interface Sci 355(2):402–409. https://doi.org/10.1016/j.jcis.2010.12.032
Rojas Ruiz FA, García-Sánchez RN, Estupiñan SV, Gomez-Barrio A, Amado DFT, Perez-Solorzano BM, Nogal-Ruiz J, Martinez-Fernandez AR, KouznetsovVV, (2011) Synthesis and antimalarial activity of new heterocyclic hybrids based on chloroquine and thiazolidinone scaffolds. Bioorgan Med Chem 19(15):4562–4573. https://doi.org/10.1016/j.bmc.2011.06.025
Faruk Khan MO, Levi M, Tekwani BL, Wilson NH, Borne RF (2007) Synthesis of isoquinuclidineanalogs of chloroquine: antimalarial and antileishmanial activity. Bioorgan Med Chem 15(11):3919–3925. https://doi.org/10.1016/j.bmc.2006.11.024
Biot C, Glorian G, Maciejewski LA, BrocardJS DO, Blampain G, Millet P, Georges AJ, Abessolo H, Dive D, Lebibi J (1997) Synthesis and antimalarial activity in-vitro and in-vivo of a new ferrocene−chloroquine analogue. J Med Chem 40(23):3715–3718. https://doi.org/10.1021/jm970401y
Khurana JM, Magoo D, Aggarwal K, Aggarwal N, Kumar R, Srivastava C (2012) Synthesis of novel 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthene-11-thiones and evaluation of their biocidal effects. Eur J Med Chem 58:470–477. https://doi.org/10.1016/j.ejmech.2012.10.025
Hafez HN, Hegab MI, Ahmed-Farag IS, El-Gazzar ABA (2008) A facile regioselective synthesis of novel spiro-thioxanthene and spiro-xanthene-9′,2[1,3,4]thiadiazole derivatives as potential analgesic and anti-inflammatory agents. Bioorgan Med Chem Lett 18(16):4538–4543. https://doi.org/10.1016/j.bmcl.2008.07.042
Knight CG, Stephens T (1989) Xanthene-dye-labelled phosphatidylethanolamines as probes of interfacial pH. Studies in phospholipid vesicles. Biochem J 258(3):683–687. https://doi.org/10.1042/bj2580683
Chen X, Pradhan T, Wang F, Kim JS, Yoon J (2012) Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives. Chem Rev 112(3):1910–1956. https://doi.org/10.1021/cr200201z
Naya A, Ishikawa M, Matsuda K (2003) Structure–activity relationships of xanthene carboxamides, novel CCR1 receptor antagonists. Bioorgan Med Chem 11(6):875–884. https://doi.org/10.1016/S0968-0896(02)00559-X
Ahmad M, King TA, Ko DK, Cha BH, Lee J (2002) Performance and photostability of xanthene and pyrromethene laser dyes in sol-gel phases. J Phys D Appl Phys 35:1473. https://doi.org/10.1088/0022-3727/35/13/303
Ramakrishna G, Ghosh HN (2001) Emission from the charge transfer state of xanthene dye-sensitized TiO2 nanoparticles: a new approach to determining back electron transfer rate and verifying the marcus inverted regime. J Phys Chem B 105(29):7000–7008. https://doi.org/10.1021/jp011291g
Klimtchuk E, Rodgers MAJ, Neckers DC (1992) Laser flash photolysis studies of novel xanthene dye derivatives. J Phys Chem A 96(24):9817–9820. https://doi.org/10.1021/j100203a044
Chauhan K, Sharma M, Saxena J, Singh SV, Trivedi P, Srivastava K, Pur SK, Saxena JK, Chaturvedi V, Chauhan PMS (2013) Synthesis and biological evaluation of a new class of 4-aminoquinoline–rhodanine hybrid as potent anti-infective agents. Eur J Med Chem 62:693–704. https://doi.org/10.1016/j.ejmech.2013.01.017
Cornut D, Lemoine H, Kanishchev O, Okada E, Albrieux F, Beavogui AH, Bienbenu AL, Stephane P, Boulillon JP, Medebielle M (2013) Incorporation of a 3-(2,2,2-trifluoroethyl)-γ-hydroxy-γ-lactam motif in the side chain of 4-aminoquinolines syntheses and antimalarial activities. J Med Chem 56(1):73–83. https://doi.org/10.1021/jm301076q
Pal S, Mishra M, Sudhakar DR, Siddiqui MH (2013) In-silico designing of a potent analogue against HIV-1 Nef protein and protease by predicting its interaction network with host cell proteins. J Pharm Bioallied Sci 5(1):66–73. https://doi.org/10.4103/0975-7406.106572
Salas PF, Herrmann C, Cawthray JF, Nimphius C, Kenkel A, Chen J, Kock CD, Smith PJ, Patrick BO, Adam MJ, Orvig C (2013) Structural characteristics of chloroquine-bridged ferrocenophane analogues of ferroquine may obviate malaria drug-resistance mechanisms. J Med Chem 56(4):1596–1613. https://doi.org/10.1021/jm301422h
Gemma S, Camodeca C, SannaCoccone S, Joshi BP, Bernetti M, Moretti V, Brogi S, Bonache de Marcous MC, SaviniTaramelli D, Basilico N, Parapini S, Rottmann M, Brun R, Lamponi S, Cacia S, Guiso G, Summers RL, Martin E, Saponara S, Gorelli B, Novellino E, Campiani G, Butini S (2012) Optimization of 4-aminoquinoline/ clotrimazole-based hybrid antimalarials: further structure-activity relationships, in vivo studies, and preliminary toxicity profiling. J Med Chem 55(15):6948–6967. https://doi.org/10.1021/jm300802s
Mott BT, Cheng KCC, Guha R, Kommer VP, Williams DL, VermeireJJ CM, Maloney DJ, Rai G, Jadhava A, Simeonov A, Inglese J, Posner GH, Thomas CJ (2012) A furoxan–amodiaquine hybrid as a potential therapeutic for three parasitic diseases. MedChemComm 3(12):1505–1511. https://doi.org/10.1039/C2MD20238G
Kumar A, Srivastava K, Raja Kumar S, Puri SK, Chauhan PMS (2008) Synthesis and bioevaluation of hybrid 4-aminoquinoline triazines as a new class of antimalarial agents. Bioorg Med Chem Lett 18(24):6530–6533. https://doi.org/10.1016/j.bmcl.2008.10.049
Chiyanzu I, Clarkson C, Smith PJ, Lehman J, Gut J, Rosenthal PJ, Chibale K (2005) Design, synthesis and anti-plasmodial evaluation in vitro of new 4-aminoquinoline isatin derivatives. Bioorgan Med Chem 13(19):3249–3261. https://doi.org/10.1016/j.bmc.2005.02.037
Balaji GL, Rajesh K, Venkatesh M, Sarveswari S, Vijayakumar V (2013) Ultrasound-promoted synthesis of bi-, tri- and tetrapodalpolyhydroquinolines, 1,4-dihydropyridines and the corresponding pyridines. RSC Adv 4:39–46. https://doi.org/10.1039/C3RA45138K
Rajesh K, Reddy BP, Vijayakumar V (2012) Ultrasound-promoted synthesis of novel bipodal and tripodalpiperidin-4-ones and silica chloride mediated conversion to its piperidin-4-ols: synthesis and structural confinements. Ultrason Sonochem 19(3):522–531. https://doi.org/10.1016/j.ultsonch.2011.10.018
Kumari P, Yadav R, Bharti R, Parvin T (2020) Regioselective synthesis of pyrimidine-fused tetrahydropyridines and pyridines by microwave-assisted one-pot reaction. Mol Divers 24(1):107–117. https://doi.org/10.1007/s11030-019-09929-4
Rajesh K, Reddy BP, Vijayakumar V (2011) Novel bipodal, tripodal, and tetrapodal 1, 4-dihydropyridines—microwave-assisted synthesis and structural confinements. Can J Chem 89(10):1236–1244. https://doi.org/10.1139/v11-088
Ragavan RV, Vijayakumar V, Kumari NS (2010) Synthesis and antimicrobial activities of novel 1,5-diaryl pyrazoles. Eur J Med Chem 45(3):1173–1180. https://doi.org/10.1016/j.ejmech.2009.04.010
Ragavan RV, Vijayakumar V, Kumari NS (2009) Synthesis of some novel bioactive 4-oxy/thio substituted-1H-pyrazol-5(4H)-ones via efficient cross-Claisen condensation. Eur J Med Chem 44(10):3852–3857. https://doi.org/10.1016/j.ejmech.2009.04.010
Illuminati G, Stegel F (1983) The formation of anionic σ-adducts from heteroaromatic compounds: structures, rates, and equilibria. Adv Heterocycl Chem. https://doi.org/10.1016/s0065-2725(08)60823-5
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242. https://doi.org/10.1093/nar/28.1.235
Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, Van der Spoel D, Hess B, Lindhahl E (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29(7):845–854. https://doi.org/10.1093/bioinformatics/btt055
Kumari JLJ, Sudan RJJ, Sudandiradoss C (2017) Evaluation of peptide designing strategy against subunit reassociation in mucin 1: a steered molecular dynamics approach. PLoS ONE 12(8):e0183041. https://doi.org/10.1371/journal.pone.0183041
Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Gr 14(1):33–38. https://doi.org/10.1016/0263-7855(96)00018-5
De Lano WL (2002) ThePyMOL Molecular graphics system. Delano Scientific, San Carlos. http://www.pymol.org/pymol
Kumari R, Kumar R, Lynn A (2014) g_mmpbsa—a GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model 54(7):1951–1962. https://doi.org/10.1021/ci500020m
Mishra SS, Sharma CS, Singh HP, Pandiya H, Kumar N (2016) In silico ADME, bioactivity and toxicity parameters calculation of some selected anti-tubercular drugs. Int J Pharmaceut Phytopharmacol Res 6(6):77–79. https://doi.org/10.24896/eijppr.2016661
Schneidman-Duhovny D, Dror O, Inbar Y, Nussinov R, Wolfson HJ (2008) PharmaGist: a webserver for ligand-based pharmacophore detection. Nucleic Acids Res 36:W223–W228. https://doi.org/10.1093/nar/gkn187
Rajesh K, Reddy BP, Vijayakumar M (2009) Synthesis and biological evaluation of 4-(4-(di-(1H-indol-3-yl) methyl) phenoxy)-2-chloroquinolines. Indian J Heterocycl Chem 19(1):95–96
Natarajan S, Rajesh K, Vijayakumar V, Suresh J, Lakshman PL (2009) 4-Azido-2-chloro-6-methylquinoline. Acta Crystallographica Sect E Struct Rep 65(4):671. https://doi.org/10.1107/S1600536809007041
Laskowski RA, Swindells MB (2011) LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model 51(10):2778–2786. https://doi.org/10.1021/ci200227u
Horton JR, Sawada K, Nishibori M, Cheng X (2005) Structural basis for inhibition of histamine N-methyltransferase by diverse drugs. J Mol Biol 353(2):334–344. https://doi.org/10.1016/j.jmb.2005.08.040
Horton JR, Sawada K, Nishibori M, Cheng X (2001) Two polymorphic forms of human histamine methyltransferase: structural, thermal, and kinetic comparisons. Structure 9(9):837–849. https://doi.org/10.1016/S0969-2126(01)00643-8
Yoshikawa T, Nakamura T, Yanai K (2019) Histamine N-methyltransferase in the brain. Int J Mol Sci 20(3):737. https://doi.org/10.3390/ijms20030737
Thurmond R (2011) Histamine in inflammation, 1st edn. Springer
Beghdadi W, Porcherie A, Schneider BS, Dubayle D, Peronet R, Huerre M, Watanabe T, Ohtsu H, Louis J, Mécheri S (2009) Role of histamine and histamine receptors in the pathogenesis of malaria. Med Sci 25(4):377–381. https://doi.org/10.1051/medsci/2009254377
Beghdadi W, Porcherie A, Schneider BS, Dubayle D, Peronet R, Huerre M, Watanabe T, Ohtsu H, Louis J, Mécheri S (2008) Inhibition of histamine-mediated signaling confers significant protection against severe malaria in mouse models of disease. J Exp Med 205(2):395–408. https://doi.org/10.1084/jem.20071548
Beghdadi WH, Schneider B, Porcherie A, Peronet R, Louis J, Mécheri S (2008) Interfering with histamine mediated signaling results in significant protection against severe malaria in mice. Int J Infect Dis 12(1):E314. https://doi.org/10.1016/j.ijid.2008.05.842
Rodriguez AM, Hambly MG, Jandu S, Simão-Gurge R, Lowder C, Lewis EE, Riffell JA, Luckhart S (2021) Histamine ingestion by anopheles stephensi alters important vector transmission behaviors and infection success with diverse plasmodium species. Biomolecules 11(5):719. https://doi.org/10.3390/biom11050719