Evaluation of water depth and inundation duration on Typha domingensis sustainability in the Everglades Stormwater treatment areas: A test cell study

Ecological Engineering - Tập 195 - Trang 107081 - 2023
Orlando A. Diaz1, Michael J. Chimney1, Nigel A. Temple2, Kristin A. Vaughan3, Hongjun Chen1
1South Florida Water Management District, 3301 Gun Club Road, West Palm Beach, FL 33406, USA
2WSP USA, 325 John Knox Rd, Building F, Suite 140, Tallahassee, FL 32303, USA
3Stantec, 901 Ponce de Leon Boulevard, Suite 900, Coral Gables, FL 33134, USA

Tài liệu tham khảo

Armstrong, 2023, The largest constructed treatment wetland project in the world: The story of the Everglades stormwater treatment areas, Ecol. Eng., 193, 107005, 10.1016/j.ecoleng.2023.107005 Armstrong, 1979, Aeration in higher plants, Adv. Bot. Res., 7, 226 Armstrong, 1994, Mechanisms of flood tolerance in plants, Acta Bot. Neerl., 43, 307, 10.1111/j.1438-8677.1994.tb00756.x Bansal, 2019, Typha (cattail) invasion in north American wetlands: biology, regional problems, impacts, ecosystems services, and management, Wetlands, 39, 645, 10.1007/s13157-019-01174-7 Bates, 2015, Fitting linear mixed models using Ime4, J. Stat. Softw., 67, 1, 10.18637/jss.v067.i01 Bendix, 1994, Internal gas transport in Typha latifolia L. and Typha angustifolia L. 1. Humidity-induced pressurization and convective throughflow, Aquat. Bot., 49, 75, 10.1016/0304-3770(94)90030-2 Blom, 1996, Flooding: the survival strategies of plants, Trends Ecol. Evol., 11, 290, 10.1016/0169-5347(96)10034-3 Brix, 1993, Chapter 2: Macrophyte-Mediated Oxygen Transfer in Wetlands: System Design, Removal Processes and Treatment Performance Brix, 1992, Internal pressurization and convective gas flow in some emergent freshwater macrophytes, Limnol. Oceanogr., 37, 1420, 10.4319/lo.1992.37.7.1420 Chabbi, 2000, Fate of oxygen losses from Typha domingensis (Typhaceae) and Cladium jamaicense (Cyperaceae) and consequences for root metabolism, Am. J. Bot., 87, 1081, 10.2307/2656644 Chen, 2011, Surface-flow constructed treatments wetlands for pollution removal: applications and perspectives, Wetlands, 31, 805, 10.1007/s13157-011-0186-3 Chen, 2014, Influence of inundation depth on Typha domingensis and its implications for phosphorus removal in the Everglades Stormwater Treatment Area, Wetlands, 34, 325, 10.1007/s13157-013-0500-3 Chen, 2010, Effect of flooding depth on growth, biomass, photosynthesis, and chlorophyll fluorescence of Typha domingensis, Wetlands, 30, 957, 10.1007/s13157-010-0094-y Chen, 2013, Effect of deep flooding on nutrients and non-structural carbohydrates of mature Typha domingensis and its post-flooding recovery, Ecol. Eng., 53, 267, 10.1016/j.ecoleng.2012.12.056 Chimney, 2000, Chapter 6, Stormwater Treatment Area – Status of research and monitoring to optimize effectiveness of nutrient removal and annual report on operational compliance Chimney, 2001, Environmental impacts to the Everglades ecosystem: a historical perspective and restoration strategies, Water Sci. Technol., 44, 93, 10.2166/wst.2001.0814 Chimney, 2006 Crawford, 1996, Oxygen deprivation stress in a changing environment, J. Exp. Bot., 47, 145, 10.1093/jxb/47.2.145 Cronk, 2001 Deegan, 2007, The influence of water level fluctuations on the growth of four emergent macrophytes species, Aquat. Bot., 86, 309, 10.1016/j.aquabot.2006.11.006 Diaz, 2019, Evaluation of inundation depth and duration threshold for cattail sustainability: In situ study Froend, 1994, Distribution, productivity and reproductive phenology of emergent macrophytes in relation to water regimes at wetlands of South-Western Australia, Aust. J. Mar. Fresh. Res., 45, 1491, 10.1071/MF9941491 Goforth, 2005 Grace, 1989, Effect of water depth on Typha latifolia and Typha domingensis, Am. J. Bot., 76, 762, 10.1002/j.1537-2197.1989.tb11371.x Grace, 1986, The biology of Canadian weeds.: 73. Typha latifolia L., Typha angustifolia L. and Typha x glauca Godr, Can. J. Plant Sci., 66, 361, 10.4141/cjps86-051 Grace, 1982, Niche differentiation between two rhizomatous plant species: Typha latifolia and Typha angustifolia, Can. J. Bot., 60, 46, 10.1139/b82-007 Grace, 1998, Long-term dynamics of Typha populations, Aquat. Bot., 61, 137, 10.1016/S0304-3770(98)00056-4 Harris, 1963, Ecology of water-level manipulations on a northern marsh, Ecology, 44, 331, 10.2307/1932180 Hurlbert, 1984, Pseudoreplication and the design of ecological field experiments, Ecol. Monogr., 54, 187, 10.2307/1942661 Kassambara Kuznetsova, 2017, ImerTest package: Test in linear mixed effects Models, J. Stat. Softw., 82, 1, 10.18637/jss.v082.i13 Lal, 2017, Mapping vegetation-resistance parameters in wetlands using generated waves, J. Hydraul. Eng., 143 Lal, 2015, The use of discharge perturbations to understand in situ vegetation resistance in wetlands, Water Resour. Res., 51, 2477, 10.1002/2014WR015472 Mann, 1999, Photosynthesis and stomatal conductance of Juncus effusus in a temperate wetland ecosystem, Aquat. Bot., 63, 127, 10.1016/S0304-3770(98)00111-9 Miao, 2014 Miao, 1998, Biomass and nutrient allocation of sawgrass and cattail along a nutrient gradient in the Florida Everglades, Wetl. Ecol. Manag., 5, 245, 10.1023/A:1008217426392 Miao, 2012, Effects of inundation on growth and nutrient allocation of six major macrophytes in the Florida Everglades, Ecol. Eng., 42, 10, 10.1016/j.ecoleng.2012.01.009 Newman, 1998, Factors influencing cattail abundance in the northern Everglades, Aquat. Bot., 60, 265, 10.1016/S0304-3770(97)00089-2 Pezeshki, 2001, Wetland plant responses to soil flooding, Environ. Exp. Bot., 46, 299, 10.1016/S0098-8472(01)00107-1 Purves, 2004, Life: The science of biology R Core Team, 2020 Raghavendra, 2018, Floridian heatwaves and extreme precipitation: future climate projections, Clim. Dyn., 52, 495, 10.1007/s00382-018-4148-9 Sklar, 2005, The ecological-societal underpinnings of Everglades restoration, Front. Ecol. Environ., 3, 161 Tukey, 1977 Voesenek, 2003, Interactions between plant hormones regulate submergence-induced shoot elongation in the flooding-tolerant dicot Rumenex palustris, Ann. Bot., 91, 205, 10.1093/aob/mcf116 Vymazal, 2007, Removal of nutrients in various types of constructed wetlands, Sci. Total Environ., 380, 48, 10.1016/j.scitotenv.2006.09.014 Waters, 1992, Effect of water depth on population parameters of a Typha glauca stand, Can. J. Bot., 70, 349, 10.1139/b92-046 Weisner, 2004, Use of morphological variability in Cladium jamaicense and Typha domingensis to understand vegetation changes in an Everglades marsh, Aquat. Bot., 78, 319, 10.1016/j.aquabot.2003.11.007 White, 2007, The influence of water level fluctuations on the potential for convective flow in the emergent macrophytes Typha domingensis and Phragmites australis, Aquat. Bot., 86, 369, 10.1016/j.aquabot.2007.01.006